Experimental neurology
-
Experimental neurology · Nov 2009
Forelimb locomotor assessment scale (FLAS): novel assessment of forelimb dysfunction after cervical spinal cord injury.
We describe here a novel forelimb locomotor assessment scale (FLAS) that assesses forelimb use during locomotion in rats injured at the cervical level. A quantitative scale was developed that measures movements of shoulder, elbow, and wrist joints, forepaw position and digit placement, forelimb-hindlimb coordination, compensatory behaviors adopted while walking, and balance. Female Sprague-Dawley rats received graded cervical contusions ranging from 200 to 230 ("mild," n=11) and 250-290 kdyn ("moderate," n=13) between C5 and C8. ⋯ Reliability was tested by having seven raters (three internal, four external) from different laboratories, independently and blindly score videos of all rats. The multivariate correlation between all raters, all animals, and all time points ranged from r(2)=0.88-0.96 (p<0.0001), indicating a high inter-rater reliability. Thus, the FLAS is a simple, inexpensive, sensitive, and reliable measure of forelimb function during locomotion following cervical SCI.
-
Experimental neurology · Nov 2009
Activation of p-38alpha MAPK contributes to neuronal hyperexcitability in caudal regions remote from spinal cord injury.
In the present study, we examined whether activation of p-38alpha MAPK modulates mechanical allodynia and neuronal hyperexcitability, and if propentofylline (PPF, a glial modulator) modulates specifically localized activated p-38alpha MAPK expression in caudal regions remote from a low thoracic hemisection injury in rats. T13 spinal hemisection produces bilateral mechanical allodynia in hindpaws with evoked (in response to mechanical stimuli) neuronal hyperexcitability in lumbar spinal wide dynamic range (WDR) neurons compared to sham controls. ⋯ Intrathecal application of PPF significantly attenuated the expression of phosphorylated p-38alpha MAPK in superficial dorsal horn neurons (10 mM) and in microglia (1 and 10 mM) in the lumbar spinal cord compared to the hemisection group (p<0.05). In conclusion, our present data demonstrate that activated neuronal and microglial, but not astrocytic, p-38alpha MAPK contributes to the maintenance of neuronal hyperexcitability in caudal regions following spinal cord injury.
-
Experimental neurology · Nov 2009
Methylprednisolone fails to improve functional and histological outcome following spinal cord injury in rats.
Currently, methylprednisolone sodium succinate (MPSS) is the standard treatment following acute spinal cord injury (SCI) as a consequence of the results obtained from the National Acute Spinal Cord Injury Studies. However, many have questioned the efficacy of MPSS because of its marginal effects. Additionally there has been criticism of both study design and statistical interpretation. ⋯ More importantly, the results of the 3D kinematic showed that the MPSS administration did not affect the flexion/extension of the hip, knee and ankle joints during the step cycle. Finally, stereological results revealed no statistically significant differences between the two experimental groups. Altogether, our results support data previously reported by several authors, suggesting that MPSS does not lead to improved functional outcome following experimental acute SCI.
-
Experimental neurology · Nov 2009
Comparative StudySpatial diversity of blood-brain barrier alteration and macrophage invasion in experimental autoimmune encephalomyelitis: a comparative MRI study.
Inflammation plays a central role in the development of numerous disorders of the central nervous system (CNS) such as multiple sclerosis (MS). For a long time it was assumed that recruitment of macrophages into the CNS and breakdown of the blood-brain barrier (BBB) are closely linked. In the present study we challenge this concept. ⋯ In conclusion, our findings show macrophage infiltration in the CNS during EAE in areas with a closed BBB for humoral factors. This holds true despite the use of a more sensitive MR contrast agent for BBB disruption than Gd-DTPA. Our experimental observations may have implications for disease monitoring in MS patients by MRI which guides treatment decisions.
-
Experimental neurology · Nov 2009
Defining the mechanisms that underlie cortical hyperexcitability in amyotrophic lateral sclerosis.
Amyotrophic lateral sclerosis [ALS] is a rapidly progressive neurodegenerative disorder of motor neurons, heralded by the development of cortical hyperexcitability. Reduction of short interval intracortical inhibition [SICI] in ALS, a feature linked to the development of cortical hyperexcitability, may be mediated by degeneration of inhibitory circuits or alternatively activation of high threshold excitatory circuits. As such, determining the mechanisms of SICI reduction in ALS has clear diagnostic and therapeutic significance. ⋯ In addition, the resting motor threshold was reduced, while the motor evoked potential amplitude was increased in ALS patients, in keeping with cortical hyperexcitability. These findings establish that SICI reduction in ALS represents degeneration of inhibitory cortical circuits, combined with excessive excitation of high threshold excitatory pathways. Neuroprotective strategies aimed at preserving the integrity of intracortical inhibitory circuits, in addition to antagonizing excitatory cortical circuits, may provide novel therapeutic targets in ALS.