Experimental neurology
-
Experimental neurology · Nov 2010
The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson's disease.
Local field potentials (LFPs) recorded through electrodes implanted in the subthalamic nucleus (STN) for deep brain stimulation (DBS) in patients with Parkinson's disease (PD) show that oscillations in the beta frequency range (8-20 Hz) decrease after levodopa intake. Whether and how DBS influences the beta oscillations and whether levodopa- and DBS-induced changes interact remains unclear. We examined the combined effect of levodopa and DBS on subthalamic beta LFP oscillations, recorded in nine patients with PD under four experimental conditions: without levodopa with DBS turned off; without levodopa with DBS turned on; with levodopa with DBS turned on; and with levodopa with DBS turned off. ⋯ Another difference was that whereas levodopa completely suppressed beta oscillations, DBS merely decreased them. When we combined levodopa and DBS, the levodopa-induced beta disruption prevailed and combining levodopa and DBS induced no significant additive effect (p=0.500). Our observations suggest that levodopa and DBS both modulate LFP beta oscillations.
-
Experimental neurology · Nov 2010
Sleep alterations in an environmental neurotoxin-induced model of parkinsonism.
Parkinson's disease (PD) is classically defined as a motor disorder resulting from decreased dopamine production in the basal ganglia circuit. In an attempt to better diagnose and treat PD before the onset of severe motor dysfunction, recent attention has focused on the early, non-motor symptoms, which include but are not limited to sleep disorders such as excessive daytime sleepiness (EDS) and REM behavioral disorder (RBD). However, few animal models have been able to replicate both the motor and non-motor symptoms of PD. ⋯ In addition, cycad-fed rats had significantly fewer orexin cells in the hypothalamus. Our results reveal a novel rodent model of parkinsonism that includes an EDS-like syndrome that may be associated with a dysregulation of orexin neurons. Further characterization of this early, non-motor symptom, may provide potential therapeutic interventions in the treatment of PD.
-
Experimental neurology · Nov 2010
Reactive astrocytosis, microgliosis and inflammation in rats with neonatal hydrocephalus.
The deleterious effects of hydrocephalus, a disorder that primarily affects children, include reactive astrocytosis, microgliosis and inflammatory responses; however, the roles that these mechanisms play in the pathophysiology of hydrocephalus are still not clear in terms of cytopathology and gene expression. Therefore we have examined neuroinflammation at both the cellular and the molecular levels in an experimental model of neonatal obstructive hydrocephalus. On post-natal day 1, rats received an intracisternal injection of kaolin to induce hydrocephalus; control animals received saline injections. ⋯ Microarray analysis identified significant (1.5-fold) changes in 1729 of 33,951 genes, including 26 genes out of 185 genes (26/185) in the cytokine-cytokine receptor interaction pathway, antigen processing and presentation pathways (15/66), and the apoptosis pathway (10/69). Collectively, these results demonstrate alterations in normal physiology and an up-regulation of the inflammatory response. These findings lead to a better understanding of neonatal hydrocephalus and begin to form a baseline for future treatments that may reverse these effects.
-
Experimental neurology · Nov 2010
Phenotypes and peripheral mechanisms underlying inflammatory pain-related behaviors induced by BmK I, a modulator of sodium channels.
The integrated mechanisms of dynamic signaling of sodium channels involved in clinical pain are still not yet clear. In this study, a new rat inflammatory pain model was developed by using the unilateral intraplantar injection of BmK I, a receptor site 3-specific modulator of sodium channels from the venom of scorpion Buthus martensi Karsch (BmK). It was found that BmK I could induce several kinds of inflammatory pain-related behaviors including spontaneous pain companied with unique episodic paroxysms, primary thermal hypersensitivity, and mirror-image mechanical hypersensitivity with different time course of development, which could be suppressed by morphine, indomethacin, or bupivacaine to a different extent. ⋯ Furthermore, the electrophysiological recordings showed that BmK I persistently increased whole-cell and tetrodotoxin-resistant (TTX-R) peak sodium currents and significantly delayed the inactivation phase of whole-cell sodium currents but could not enhance capsaicin-evoked inward currents, in acute isolated small dorsal root ganglion neurons of rat. The results strongly suggested that the dynamic modulation of BmK I on sodium channels located in peripheral primary afferent neurons, especially in capsaicin-sensitive neurons, mediated pain sensation. Thus, BmK I may be a valuable pharmacological tool to understand the sodium channel-involved pain mechanisms.
-
Experimental neurology · Nov 2010
A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma.
We have assessed potential mechanisms associated with the deleterious effects of TBI on the integrity of plasma membranes in the hippocampus, together with consequences for behavioral function. In addition, we have investigated the efficacy of a dietary intervention based on a pyrazole curcumin derivative with demonstrated bioactivity and brain absorption, to re-establish membrane integrity. We report that moderate fluid percussion injury (FPI) increases levels of 4-Hydroxynonenal (HNE), an intermediary for the harmful effects of lipid peroxidation on neurons. ⋯ In addition, changes in iPLA2, 4-HNE, and STX-3 were proportional to reduced performance in a spatial learning task. In turn, the dietary supplementation with the curcumin derivative counteracted all the effects of FPI, effectively restoring parameters of membrane homeostasis. Results show the potential of the curcumin derivative to promote membrane homeostasis following TBI, which may foster a new line of non-invasive therapeutic treatments for TBI patients by endogenous up-regulation of molecules important for neural repair and plasticity.