Experimental neurology
-
Experimental neurology · Jan 2010
Sigma receptor ligand 4-phenyl-1-(4-phenylbutyl)-piperidine modulates neuronal nitric oxide synthase/postsynaptic density-95 coupling mechanisms and protects against neonatal ischemic degeneration of striatal neurons.
In adult stroke models, 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP), a sigma receptor agonist, attenuates activity of neuronal nitric oxide synthase (nNOS), blunts ischemia-induced nitric oxide production, and provides neuroprotection. Here, we tested the hypothesis that PPBP attenuates neuronal damage in a model of global hypoxia-ischemia (H-I) in newborn piglets. Piglets subjected to hypoxia followed by asphyxic cardiac arrest were treated with saline or two dosing regimens of PPBP after resuscitation. ⋯ The latter effect was associated with changes in the coupling of nNOS to postsynaptic density-95 (PSD-95), but not NR2-PSD-95 interactions. Moreover, PPBP suppressed NOS activity in the membrane fraction and reduced H-I-induced nitrative and oxidative damage to proteins and nucleic acids. These findings indicate that PPBP protects striatal neurons in a large animal model of neonatal H-I and that the protection is associated with decreased coupling of nNOS to PSD-95.
-
Experimental neurology · Jan 2010
A bilateral cervical contusion injury model in mice: assessment of gripping strength as a measure of forelimb motor function.
Here, we describe a bilateral cervical contusion model for mice. Adult female mice received graded bilateral contusion injuries at cervical level 5 (C5) using a commercially available impactor (the IH device). Three separate experiments were carried out to define conditions that produce impairments in forelimb function without unacceptable impairment of general health. ⋯ Most lesions filled in with a fibrous tissue matrix, but fluid-filled cystic cavities were found in 13% of the 100 kdyn injury group and a combination of fibrous-filled/fluid-filled cystic cavities were found in 22% and 38% of the 75-kdyn and 100-kdyn injury groups, respectively. There was minimal urine retention following cervical contusion injuries indicating preservation of bladder function. Our results define conditions to produce graded bilateral cervical contusion injuries in mice and demonstrate the usefulness of the GSM for assessing forelimb motor function after cervical contusions.
-
Experimental neurology · Jan 2010
Schwann cells engineered to express the cell adhesion molecule L1 accelerate myelination and motor recovery after spinal cord injury.
Functional recovery after spinal cord lesion remains an important goal. A combination of inhibitory molecules and lack of appropriate permissive factors in the lesioned spinal cord results in failure of fiber tract reconnection and function. Experimental transplantation in rodent and primate models of CNS injuries has led to the idea that Schwann cells (SCs) are promising candidates for autologous transplantation to assist myelination of lesions and to deliver therapeutic agents in the CNS. ⋯ Morphological analysis indicated that the accelerated functional recovery correlated with earlier and enhanced myelination by both grafted and host SCs. Moreover, increased sprouting of serotonergic fibers into and across the lesion site was observed in the L1/L1-Fc group as compared with controls. Our results suggest that transplantation of L1-overexpressing SCs enhances early events in spinal cord repair after injury and may be considered in combinatorial strategies together with other regeneration-promoting molecules.
-
Experimental neurology · Jan 2010
Clinical TrialBilateral symmetry and coherence of subthalamic nuclei beta band activity in Parkinson's disease.
Abnormal synchronization of neuronal activity in the basal ganglia has been associated with the dysfunction of sensorimotor circuits in Parkinson's disease (PD). In particular, oscillations at frequencies within the beta range (13-35 Hz) are specifically modulated by dopaminergic medication and are correlated with the clinical state of the subjects. ⋯ Here we demonstrate for the first time that the beta band oscillations recorded in the local field potential of the subthalamic nuclei (STN), while appearing different across subjects, are occurring at the same frequencies bilaterally (p<0.001) and are coherent between the two STNs of individual PD subjects (11/12 cases, p<0.05). These findings suggest the existence of a bilateral network controlling the beta band activity in the basal ganglia in PD.
-
Experimental neurology · Jan 2010
Clinical TrialMechanical but not painful electrical stimuli trigger TNF alpha release in human skin.
Pro-inflammatory cytokines-in particular tumor necrosis factor (TNF)-alpha-play an important role in pain and hyperalgesia. The stimuli inducing TNF-alpha release in humans and the time course of this release are largely unknown. We performed dermal microdialysis in healthy subjects (n=36) during three experimental conditions: The first condition (control) was microdialysis without stimulation, the second condition was 30 min of electrical current stimulation (1 Hz, 20 mA, moderately painful), the third condition was 30 min of repetitive mechanical stimulation via an impact stimulator (bullet 0.5 g; velocity 11 m/s, minimally painful). ⋯ Flare intensity was highest in the electrical current stimulation condition and only marginally different from control in mechanical stimulation. Our results show that minimal mechanical trauma is sufficient to induce significant TNF-alpha release in the skin. These results may be relevant to the treatment of posttraumatic pain disorders.