Experimental neurology
-
Experimental neurology · Oct 2013
The trade-off between wiring cost and network topology in white matter structural networks in health and migraine.
The human brain organization of cortical networks has optimized trade-off architecture for the economical minimization of connection distance and maximizing valuable topological properties; however, whether this network configuration is disrupted in chronic migraine remains unknown. Here, employing the diffusion tensor imaging and graph theory approaches to construct white matter networks in 26 patients with migraine (PM) and 26 gender-matched healthy controls (HC), we investigated relationships between structural connectivity, cortical network architecture and anatomical distance in the two groups separately. Compared with the HC group, the patients showed longer global distance connection in PM, with proportionally less short-distance and more medium-distance; correspondingly, the patients showed abnormal global topology in their structural networks, mainly presented as a higher clustering coefficient. ⋯ Intriguingly, the network measure that combined the nodal anatomical distance and network topology could distinguish PM from HC with high accuracy of 90.4%. We also demonstrated a high reproducibility of our findings across different parcellation schemes. Our results demonstrated that long-term migraine may result in a abnormal optimization of a trade-off between wiring cost and network topology in white matter structural networks and highlights the potential for combining spatial and topological aspects as a network marker, which may provide valuable insights into the understanding of brain network reorganization that could be attributed to the underlying pathophysiology resulting from migraine.
-
Experimental neurology · Oct 2013
A non-cholinergic neuronal loss in the pedunculopontine nucleus of toxin-evoked parkinsonian rats.
The pedunculopontine nucleus (PPN) controls various physiological functions, whilst being deemed a suitable target for low-frequency stimulation therapy for alleviating aspects of Parkinson's disease (PD). Previous studies showed that the PPN contains mainly cholinergic, γ-aminobutyric acid (GABA)ergic and glutamatergic neurons. Here we report on the total number of PPN neurons in laboratory rats, a species frequently used as an experimental model for simulating aspects of human PD. ⋯ Our data also show a significant loss which affected PPN non-cholinergic cells, but not cholinergic ones in rats lesioned unilaterally in the Substantia Nigra pars compacta (SNpc) with a single injection of 6-hydroxydopamine (6-OHDA) compared to control animals. This result differs from previous studies which reported a substantial cholinergic cell loss in the PPN of post-mortem PD brains and in 6-OHDA-lesioned monkeys. Since a noted demise of dopaminergic neurons residing in the SN was confirmed in the 6-OHDA-lesioned rats, the current study suggests that a "dying-back" mechanism may underlie the cell death affecting non-cholinergic PPN neurons.
-
Experimental neurology · Oct 2013
Sensitization of sodium channels by cystathionine β-synthetase activation in colon sensory neurons in adult rats with neonatal maternal deprivation.
The pathogenesis of pain in irritable bowel syndrome (IBS) is poorly understood and treatment remains difficult. We have previously reported that TTX-resistant (TTX-R) sodium channels in colon-specific dorsal root ganglion (DRG) neurons were sensitized and the expression of the endogenous hydrogen sulfide producing enzyme cystathionine β-synthetase (CBS) was upregulated in a rat model of visceral hypersensitivity induced by neonatal maternal deprivation (NMD). However, the detailed molecular mechanism for activation of sodium channels remains unknown. This study was designed to examine roles for CBS-H₂S signaling in sensitization of sodium channels in a previously validated rat model of IBS. ⋯ These data suggest that sensitization of sodium channels of colon DRG neurons in NMD rats is most likely mediated by CBS-H₂S signaling, thus identifying a potential target for treatment for chronic visceral pain in patients with IBS.
-
Experimental neurology · Oct 2013
Burn injury-induced mechanical allodynia is maintained by Rac1-regulated dendritic spine dysgenesis.
Although nearly 11 million individuals yearly require medical treatment due to burn injuries and develop clinically intractable pain, burn injury-induced pain is poorly understood, with relatively few studies in preclinical models. To elucidate mechanisms of burn injury-induced chronic pain, we utilized a second-degree burn model, which produces a persistent neuropathic pain phenotype. Rats with burn injury exhibited reduced mechanical pain thresholds ipsilateral to the burn injury. ⋯ Heat hyperalgesia testing produced variable results, as expected from previous studies of this model of second-degree burn injury in rats. Administration of Rac1-inhibitor, NSC23766, attenuated dendritic spine dysgenesis, decreased mechanical allodynia and electrophysiological signs of burn-induced neuropathic pain. These results support two related implications: that the presence of abnormal dendritic spines contributes to the maintenance of neuropathic pain, and that therapeutic targeting of Rac1 signaling merits further investigation as a novel strategy for pain management after burn injury.
-
Experimental neurology · Oct 2013
The role of α₂ adrenoceptor in mediating noradrenaline action in the ventrolateral orbital cortex on allodynia following spared nerve injury.
The present study examined the role of α₂ adrenoceptor in mediating noradrenaline action in the ventrolateral orbital cortex (VLO) on allodynia induced by spared nerve injury (SNI) in the rat. The mechanical paw withdrawal threshold (PWT) was measured using von-Frey filaments. Microinjection of noradrenaline (1, 2, 4 μg in 0.5 μl) into the VLO, contralateral to the site of nerve injury, reduced allodynia; PWT increased in a dose-dependent manner. ⋯ Furthermore, administration of γ-aminobutyric acid A (GABAA) receptor antagonist bicuculline or picrotoxin to the VLO significantly enhanced clonidine-induced inhibition of allodynia, while GABAA receptor agonist muscimol or THIP (2,5,6,7-retrahydroisoxazolo(5,4-c)pyridine-3-ol hydrochloride) attenuated clonidine-induced inhibition. These results suggest that noradrenaline acting in the VLO can potentially reduce allodynia induced by SNI, and this effect is mediated by α₂ adrenoceptor. Moreover, GABAergic disinhibition may participate in α₂ receptor mediating effects in neuropathic pain in the central nervous system.