Experimental neurology
-
Experimental neurology · Oct 2013
Early cognitive changes due to whole body γ-irradiation: a behavioral and diffusion tensor imaging study in mice.
Radiation-induced aberration in the neuronal integrity and cognitive functions are well known. However, there is a lacuna between sparsely reported immediate effects and the well documented delayed effects of radiation on cognitive functions. The present study was aimed at investigating the radiation-dose dependent incongruities in the early cognitive changes, employing two approaches, behavioral functions and diffusion tensor imaging (DTI). ⋯ The hippocampus emerged as one of the sensitive regions to be affected by whole-body exposure to gamma rays, which led to profound immediate alterations in cognitive functions. Furthermore, the results indicate a cognitive recovery process, which might be dependent on the extent of damage to the hippocampal region. The present study also emphasizes the importance of further research to unravel the complex pattern of neurobehavioral responses immediately following ionizing radiation exposure.
-
Experimental neurology · Oct 2013
Caffeine and modafinil promote adult neuronal cell proliferation during 48 h of total sleep deprivation in rat dentate gyrus.
It has been established that sleep deprivation (SD) reduces the proliferation of neuronal precursors in the adult hippocampus. It has also been reported that psychostimulant drugs modulate adult neurogenesis. We examined the modulatory role of two psychostimulant drugs modafinil and caffeine on adult neuronal cell proliferation (NCP) during 48 h of total SD. ⋯ Modafinil, but not caffeine, significantly decreased hippocampal adenosine level during SD in comparison to the SD+Vehicle group. It may be concluded that caffeine or modafinil treatment during 48 h of SD prevents the SD induced decline in neuronal proliferation and differentiation. Caffeine and modafinil induced alterations of NCP during SD may involve modulation of BDNF and adenosine levels.
-
Experimental neurology · Oct 2013
Prevention of rt-PA induced blood-brain barrier component degradation by the poly(ADP-ribose)polymerase inhibitor PJ34 after ischemic stroke in mice.
Recombinant tissue plasminogen activator (rt-PA) is the only pharmacological treatment approved for thrombolysis in patients suffering from ischemic stroke, but its administration aggravates the risk of hemorrhagic transformations. Experimental data demonstrated that rt-PA increases the activity of poly(ADP-ribose)polymerase (PARP). The aim of the present study was to investigate whether PJ34, a potent (PARP) inhibitor, protects the blood-brain barrier components from rt-PA toxicity. ⋯ Combining PJ34 with rt-PA preserved the expression of ZO-1, claudin-5 and VE-cadherin, reduced the hemorrhagic transformations and improved the sensorimotor performances. In vitro studies also demonstrated that PJ34 crosses the blood-brain barrier and may thus exert its protective effect by acting on endothelial and/or parenchymal cells. Thus, co-treatment with a PARP inhibitor seems to be a promising strategy to reduce rt-PA-induced vascular toxicity after stroke.