Experimental neurology
-
Experimental neurology · Jan 2013
Corticotropin-releasing factor in the mouse central nucleus of the amygdala: ultrastructural distribution in NMDA-NR1 receptor subunit expressing neurons as well as projection neurons to the bed nucleus of the stria terminalis.
Corticotropin-releasing factor (CRF) and glutamate are critical signaling molecules in the central nucleus of the amygdala (CeA). Central amygdala CRF, acting via the CRF type 1 receptor (CRF-R1), plays an integral role in stress responses and emotional learning, processes that are generally known to involve functional NMDA-type glutamate receptors. There is also evidence that CRF expressing CeA projection neurons to the bed nucleus of the stria terminalis (BNST) play an important role in stress related behaviors. ⋯ It was also found that CRF, or GFP expressing terminals directly contacted CeA-BNST projection neurons. These results indicate that the NMDA receptor is positioned for the postsynaptic regulation of CRF expressing CeA neurons and the modulation of signals conveyed by CRF inputs. Interactions between CRF and NMDA receptor mediated signaling in CeA neurons, including those projecting to the BNST, may provide the synaptic basis for integrating the experience of stress and relevant environmental stimuli with behaviors that may be of particular relevance to stress-related learning and the emergence of psychiatric disorders, including drug addiction.
-
Experimental neurology · Jan 2013
Involvement of PKA-dependent upregulation of nNOS-CGRP in adrenomedullin-initiated mechanistic pathway underlying CFA-induced response in rats.
We have previously shown that intrathecal administration of the adrenomedullin (AM) receptor antagonist AM(22-52) produces a long-lasting anti-hyperalgesia effect. This study examined the hypothesis that AM recruits other pronociceptive mediators in complete Freund's adjuvant (CFA)-induced inflammation. Injection of CFA in the hindpaw of rat produced an increase in the expression of nNOS in dorsal root ganglion (DRG) and the spinal dorsal horn. ⋯ Treatment with AM also concentration-dependently increased cAMP content and pPKA protein level, but not its non-phosphorylated form, in cultured ganglia. In addition, nNOS was shown to be co-localized with the AM receptor components calcitonin receptor-like receptor and receptor activity-modifying protein 2- and 3 in DRG neurons. The present study suggests that the enhanced activity of nitric oxide (NO) mediates the biological action of AM at the spinal level and that AM recruits NO-CGRP via cAMP/PKA signaling in a mechanistic pathway underlying CFA-induced hyperalgesia.
-
Experimental neurology · Jan 2013
Improved outcome after spinal cord compression injury in mice treated with docosahexaenoic acid.
In this study we have characterised the locomotor recovery, and temporal profile of cell loss, in a novel thoracic compression spinal cord injury (SCI) in the mouse. We have also shown that treatment with docosahexaenoic acid (DHA) is neuroprotective in this model of SCI, strengthening the growing literature demonstrating that omega-3 polyunsaturated fatty acids are neuroprotective after SCI. Compression SCI in C57BL/6 mice was produced by placing a 10 g weight for 5 min onto a 2 mm × 1.5 mm platform applied to the dura at vertebral level T12. ⋯ Mice that received an intravenous (i.v.) injection of 500 nmol/kg DHA 30 min after SCI, showed improved locomotor recovery and, at 28 day survival, reduced neuronal, oligodendrocyte and neurofilament loss, and reduced microglia/macrophage activation. For some of these indices of SCI, enrichment of the diet with 400 mg/kg/day DHA led to further improvement. However, dietary DHA supplementation, without the initial i.v. injection, was ineffective.
-
Experimental neurology · Jan 2013
Human Stiff person syndrome IgG-containing high-titer anti-GAD65 autoantibodies induce motor dysfunction in rats.
Stiff person syndrome (SPS) is an autoimmune CNS disorder characterized by muscle rigidity, spasms and anxiety. The majority of patients have high-titer autoantibodies (ab) against glutamate decarboxylase (GAD65). A pathogenic role of SPS-associated IgG with ab against GAD65 has been shown for anxiety-like behavior but not for the core motor signs. ⋯ Rats injected i.th. with SPS-IgG did not present obvious motor symptoms and had a normal synaptic transmission at the spinal level. We conclude that SPS-like motor dysfunction can be induced in rats by passive transfer of IgG from an SPS-patient with high titer of anti-GAD65 ab. GABAergic dysfunction in supraspinal motor pathways rather than in the spinal cord may lead to motor deficits observed in the rats contrasting observations made in SPS with amphiphysin antibodies.