Experimental neurology
-
Experimental neurology · Sep 2013
Mindin is a critical mediator of ischemic brain injury in an experimental stroke model.
Stroke is the second leading cause of death among adults worldwide. Mindin is an ECM protein that plays important roles in regulating inflammation, angiogenesis and neuronal outgrowth. The role of mindin in the context of brain ischemia has not been examined. ⋯ Mindin KO mice exhibited minor infarctions, an attenuated inflammatory response and low levels of neuronal apoptosis following an ischemic insult. These data demonstrate that mindin is a critical mediator of ischemic brain injury in an experimental stroke model. Akt signaling most likely mediates the biological function of mindin in this model of cerebral ischemia.
-
Experimental neurology · Sep 2013
Sigma-1 receptor-mediated increase in spinal p38 MAPK phosphorylation leads to the induction of mechanical allodynia in mice and neuropathic rats.
The direct activation of the spinal sigma-1 receptor (Sig-1R) produces mechanical allodynia (MA) and thermal hyperalgesia (TH) in mice. In addition, the blockade of the spinal Sig-1R prevents the induction of MA, but not TH in chronic constriction injury (CCI)-induced neuropathic rats. The present study was designed to investigate whether the increase in spinal p38 MAPK phosphorylation (p-p38 MAPK) mediates Sig-1R-induced MA or TH in mice and the induction of MA in neuropathic rats. ⋯ SB203580 treatment during the maintenance phase (postoperative days 15 to 20) had no effect on CCI-induced MA or TH. These results demonstrate that the increase in spinal p-p38 MAPK is closely associated with the induction of Sig-1R mediated MA, but not TH. Sigma-1 receptor modulation of p-p38 MAPK also plays an important role in the induction, but not the maintenance, of MA in neuropathic pain.
-
Experimental neurology · Sep 2013
Estradiol increases dendritic length and spine density in CA1 neurons of the hippocampus of spontaneously hypertensive rats: a Golgi impregnation study.
Increased neuronal vulnerability has been described in the brain of spontaneously hypertensive rats (SHR), models of primary hypertension. Previous data indicate that estradiol treatment corrects several dysfunctions of the hippocampus and hypothalamus of SHR. Considering this evidence we analyzed the dendritic arborization and spine density of the CA1 subfield in SHR and Wistar-Kyoto (WKY) normotensive rats with and without estradiol treatment. ⋯ Similar changes were obtained for basal dendritic spines. These data suggest that changes of neuronal processes in SHR are plastic events restorable by estradiol treatment. In conjunction with previous results, the present data reveal new targets of estradiol neuroprotection in the brain of hypertensive rats.
-
Experimental neurology · Sep 2013
Effects of hypothermia on oligodendrocyte precursor cell proliferation, differentiation and maturation following hypoxia ischemia in vivo and in vitro.
Hypoxic-ischemia (HI) not only causes gray matter injury but also white matter injury, leading to severe neurological deficits and mortality, and only limited therapies exist. The white matter of animal models and human patients with HI-induced brain injury contains increased oligodendrocyte precursor cells (OPCs). However, little OPC can survive and mature to repair the injured white matter. ⋯ The myelinated axons and animal behavior both markedly increased in hypothermic- compared to normothermic-animals after HI. In summary, these data suggest that hypothermia has the effects to protect OPC and to promote OL maturation and myelin repair in hypoxic-ischemic events in the neonatal rat brain. This study proposed new aspects that may contribute to elucidate the mechanism of hypothermic neuroprotection for white matter injury in neonatal rat brain injury.
-
Experimental neurology · Sep 2013
Mobilisation of the splenic monocyte reservoir and peripheral CX₃CR1 deficiency adversely affects recovery from spinal cord injury.
Macrophages in the injured spinal cord originate from resident microglia and blood monocytes. Whether this diversity in origins contributes to their seemingly dual role in immunopathology and repair processes has remained poorly understood. Here we took advantage of Cx₃cr1(gfp) mice to visualise monocyte-derived macrophages in the injured spinal cord via adoptive cell transfer and bone marrow (BM) chimera approaches. ⋯ Adoptive transfer experiments further suggested high turnover of inflammatory monocytes in the spinal cord at 7 days post-injury. Consistent with this, only a small proportion of infiltrating cells unequivocally expressed polarisation markers for pro-inflammatory (M1) or alternatively activated (M2) macrophages at this time point. Our findings offer new insights into the origins of monocyte-derived macrophages after SCI and their contribution to functional recovery, providing a basis for further scrutiny and selective targeting of Ly6C(high) monocytes to improve outcomes from neurotraumatic events.