Experimental neurology
-
Experimental neurology · Nov 2015
Chronic stress and peripheral pain: Evidence for distinct, region-specific changes in visceral and somatosensory pain regulatory pathways.
Chronic stress alters the hypothalamic-pituitary-adrenal (HPA) axis and enhances visceral and somatosensory pain perception. It is unresolved whether chronic stress has distinct effects on visceral and somatosensory pain regulatory pathways. Previous studies reported that stress-induced visceral hyperalgesia is associated with reciprocal alterations of endovanilloid and endocannabinoid pain pathways in DRG neurons innervating the pelvic viscera. ⋯ Behavioral assessment showed that visceral hyperalgesia persisted, whereas somatosensory hyperalgesia and enhanced expression of Nav1.7 and Nav1.8 sodium channels in L4-L5 DRGs normalized 3 days after completion of the stress phase. These data indicate that chronic stress induces visceral and somatosensory hyperalgesia that involves differential changes in endovanilloid and endocannabinoid pathways, and sodium channels in DRGs innervating the pelvic viscera and lower extremities. These results suggest that chronic stress-induced visceral and lower extremity somatosensory hyperalgesia can be treated selectively at different levels of the spinal cord.
-
Experimental neurology · Nov 2015
The role of CNS TLR2 activation in mediating innate versus adaptive neuroinflammation.
Toll-like receptor 2 (TLR2) is expressed on immune cells in the periphery and the CNS and mediates both innate and adaptive immune responses. Recent studies have implicated TLR2 in systemic pathogenesis of adaptive immunity in experimental autoimmune encephalomyelitis (EAE). In addition, TLR2 is expressed on oligodendrocyte progenitor cells and its activation inhibits their differentiation and myelination. ⋯ We conclude that EAE mice are hypersensitive to CNS TLR2 activation with a severe toxic response. This might represent the susceptibility of multiple sclerosis patients to even trivial infections. As CNS TLR2 activation does not alter the clinical and pathological course of EAE, it implies that CNS TLR2 activation affects the innate but not adaptive brain immune responses.
-
Experimental neurology · Nov 2015
Post-stroke transplantation of adult subventricular zone derived neural progenitor cells--A comprehensive analysis of cell delivery routes and their underlying mechanisms.
With neuroprotective approaches having failed until recently, current focus on experimental stroke research has switched towards manipulation of post-ischemic neuroregeneration. Transplantation of subventricular zone (SVZ) derived neural progenitor cells (NPCs) is a promising strategy for promotion of neurological recovery. Yet, fundamental questions including the optimal cell delivery route still have to be addressed. ⋯ On the contrary, only systemic NPC administration stabilized the blood-brain-barrier and reduced leukocytosis in the blood. Although intraarterial NPC transplantation was as effective as intravenous cell grafting, mortality of stroke mice was high using the intraarterial delivery route. Consequently, intravenous delivery of native NPCs in our experimental model is an attractive and effective strategy for stroke therapy that deserves further proof-of-concept studies.