Experimental neurology
-
Experimental neurology · Mar 2009
Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury.
Evidence suggests that the reactive oxygen species peroxynitrite (PN) is an important player in the pathophysiology of acute spinal cord injury (SCI). In the present study, we examined the ability of tempol, a catalytic scavenger of PN-derived free radicals, to alleviate oxidative damage, mitochondrial dysfunction and cytoskeletal degradation following a severe contusion (200 kdyn force) SCI in female Sprague-Dawley rats. PN-mediated oxidative damage in spinal cord tissue, including protein nitration, protein oxidation and lipid peroxidation was significantly reduced by acute tempol treatment (300 mg/kg, i.p. within 5 min post-injury). ⋯ Increased levels of alpha-spectrin breakdown proteins (SBDP 145 kD and 150 kD) were significantly decreased at 24 h in tempol-treated rats indicative of spinal axonal protection. However, a therapeutic window analysis showed that the axonal cytoskeletal protective effects require tempol dosing within the first hour after injury. Nevertheless, these findings are the first to support the concept that PN is an important neuroprotective target in early secondary SCI, and that there is a mechanistic link between PN-mediated oxidative compromise of spinal cord mitochondrial function, loss of intracellular Ca(2+) homeostasis and calpain-mediated proteolytic axonal damage.
-
Experimental neurology · Feb 2009
Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain.
Activation of N-methyl-d-aspartate (NMDA) receptors in the spinal dorsal horn has been shown to be essential for the initiation of central sensitization and the hyperexcitability of dorsal horn neurons in chronic pain. However, whether the spinal NR2B-containing NMDA (NMDA-2B) receptors are involved still remains largely unclear. Using behavioral test and in vivo extracellular electrophysiological recording in L5 spinal nerve-ligated (SNL) neuropathic rats, we investigate the roles of spinal cord NMDA-2B receptors in the development of neuropathic pain. ⋯ These results indicate that activation of the dorsal horn NMDA-2B receptors may be crucial for the spinal nociceptive synaptic transmission and for the development of long-lasting spinal hyperexcitability following nerve injury. In conclusion, the spinal cord NMDA-2B receptors play a role in the development of central sensitization and neuropathic pain via the induction of LTP in dorsal horn nociceptive synaptic transmission. Therefore, the spinal cord NMDA-2B receptor is likely to be a target for clinical pain therapy.
-
Experimental neurology · Jan 2009
Clinical TrialThe STN beta-band profile in Parkinson's disease is stationary and shows prolonged attenuation after deep brain stimulation.
Producing accurate movements may rely on the functional independence of sensorimotor circuits within basal ganglia nuclei. In parkinsonism there is abnormal synchrony of electrical activity within these circuits that results in a loss of independence across motor channels. Local field potential (LFP) recordings reflect the summation of local electrical fields and an increase in LFP power reflects increased synchrony in local neuronal networks. ⋯ Beta-band power was attenuated after intra-operative STN DBS (p<0.05). The attenuation lasted for 10 s after short periods (30 s) and for up to 50 s after longer periods (5 min) of DBS. The finding that longer periods of DBS attenuated beta power for a longer time suggests that there may be long-acting functional changes to networks in the STN in PD after chronic DBS.
-
Experimental neurology · Jan 2009
Immediate short-duration hypothermia provides long-term protection in an in vivo model of traumatic axonal injury.
A prospective, multicenter, randomized trial did not demonstrate improved outcomes in severe traumatic brain injured patients treated with mild hypothermia [Clifton, G. L., Miller, E. R., Choi, S. ⋯ Immediate post-injury hypothermia (32 degrees C) for 3 h reduced axonal degeneration in the core (p=0.027). There was no differential protection based on axon size. These results support further clinical investigation of temporally optimized therapeutic hypothermia after traumatic brain injury.
-
Experimental neurology · Jan 2009
Distinct MRI pattern in lesional and perilesional area after traumatic brain injury in rat--11 months follow-up.
To understand the dynamics of progressive brain damage after lateral fluid-percussion induced traumatic brain injury (TBI) in rat, which is the most widely used animal model of closed head TBI in humans, MRI follow-up of 11 months was performed. The evolution of tissue damage was quantified using MRI contrast parameters T(2), T(1rho), diffusion (D(av)), and tissue atrophy in the focal cortical lesion and adjacent areas: the perifocal and contralateral cortex, and the ipsilateral and contralateral hippocampus. In the primary cortical lesion area, which undergoes remarkable irreversible pathologic changes, MRI alterations start at 3 h post-injury and continue to progress for up to 6 months. ⋯ Our data show that TBI induced by lateral fluid-percussion injury triggers long-lasting alterations with region-dependent temporal profiles. Importantly, the temporal pattern in MRI parameters during the first 23 d post-injury can indicate the regions that will develop secondary damage. This information is valuable for targeting and timing interventions in studies aiming at alleviating or reversing the molecular and/or cellular cascades causing the delayed injury.