Experimental neurology
-
Experimental neurology · Jul 2007
Reversal of ERK activation in the dorsal horn after decompression in chronic constriction injury.
Injury-induced neuropathic pain is related to changes in the central terminals of dorsal root ganglia neurons, i.e., dorsal horn plasticity. We investigated the influences of decompression by removing ligatures producing chronic constriction injury (CCI) in Sprague-Dawley rats at postoperative week (POW) 4, the decompression group; for comparison, all ligatures remained through the experimental period in the CCI group. ⋯ At POW 8, thermal hyperalgesia and mechanical allodynia had completely disappeared with a normalization of dorsal horn index (1.17+/-0.11 vs. 1.02+/-0.12 at POW 0, p=0.07) in the decompression group; in contrast, the dorsal horn index remained elevated in the CCI group (2.48+/-0.30, p<0.001) with persistent neuropathic pain behaviors at POW 8. This report suggests that ERK activation in the dorsal horn is correlated with neuropathic pain behaviors and its normalization reflects the reversal of neuropathic pain behaviors after decompression.
-
Experimental neurology · Jul 2007
Simvastatin and atorvastatin improve behavioral outcome, reduce hippocampal degeneration, and improve cerebral blood flow after experimental traumatic brain injury.
The treatment of traumatic brain injury (TBI) remains limited, and aside from surgical hematoma evacuation, clinical management is largely supportive and directed toward management of cerebral edema and intracranial hypertension. Secondary neuronal injury caused by ischemia and the development of cerebral edema may occur in the subacute phase, with intracranial pressures often peaking in the first several days following injury. Because inflammation contributes significantly to the pathophysiology of cerebral ischemia and endothelial dysfunction underlies the development of cerebral edema, therapeutic strategies that target the post-traumatic inflammatory cascade and reduce endothelial dysfunction hold enormous potential to improve clinical outcomes after TBI. ⋯ These effects were accompanied by histological reduction in degenerating hippocampal neurons and suppression of inflammatory cytokine mRNA expression in brain parenchyma. Furthermore, statin treatment improved cerebral hemodynamics following head injury. Thus, the administration of statins may represent a viable therapeutic strategy in the acute treatment of closed head injury.
-
Experimental neurology · Jun 2007
Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression.
Brief electrical stimulation enhances the regenerative ability of axotomized motor [Nix, W. A., Hopf, H. C., 1983. ⋯ Stimulation for 1 h also significantly increased the numbers of neurons that regenerated axons beyond the repair site 4 days after lesion and was correlated with a significant increase in expression of growth-associated protein 43 (GAP-43) mRNA in the regenerating neurons at 2 days post-repair. An additional indicator of heightened plasticity following 1 h stimulation was elevated expression of brain-derived neurotrophic factor (BDNF). The effect of brief stimulation on enhancing sensory and motoneuron regeneration holds promise for inducing improved peripheral nerve repair in the clinical setting.
-
Experimental neurology · Jun 2007
Peri-sciatic administration of recombinant rat TNF-alpha induces mechanical allodynia via upregulation of TNF-alpha in dorsal root ganglia and in spinal dorsal horn: the role of NF-kappa B pathway.
Previous studies have shown that tumor necrosis factor-alpha (TNF-alpha) and TNF receptor 1 (TNFR1) in dorsal root ganglia (DRG) and in spinal dorsal horn are upregulated after nerve injury and that many TNF-alpha-containing neurons overexpress TNFR1. In the present study, we found that peri-sciatic administration of rat recombinant TNF-alpha (rrTNF) at the concentrations of 10, 100 and 1000 pg/ml (daily for 2 days) induced mechanical allodynia in bilateral hindpaws, lasting for about 20 days. The immunoreactivity (IR) of TNF-alpha and TNFR1 in the ipsilateral (but not in the contralateral) L4 and L5 DRGs increased significantly on day 1 and day 3 after administration of rrTNF, respectively. ⋯ In addition, a progressive infiltration of monocyte/macrophages and T lymphocytes in the ipsilateral L5 DRG and sciatic nerve was observed, starting on day 2 following administration of rrTNF. Intrathecal delivery of PDTC (8.2 ng in 10 microl volume), a nuclear factor-kappa B (NF-kappaB) inhibitor, 30 min before each rrTNF administration blocked mechanical allodynia completely and inhibited the upregulation of TNF-alpha-IR and TNFR1-IR substantially. The results suggest that peri-sciatic administration of rrTNF may induce mechanical allodynia by an autocrine mechanism via activation of the NF-kappaB pathway.
-
Experimental neurology · May 2007
Effects of 6-hydroxydopamine-induced severe or partial lesion of the nigrostriatal pathway on the neuronal activity of pallido-subthalamic network in the rat.
The origin of changes in the neuronal activity of the globus pallidus (GP) and the subthalamic nucleus (STN) in animal models of Parkinson's disease (PD) is still controversial. The aim of the study was to investigate the neuronal activity of STN and GP neurons under urethane anesthesia in an early and in an advanced stage PD rat model. 6-Hydroxydopamine (6-OHDA) injection into the striatum induced a partial lesion of dopamine cells in the substantia nigra pars compacta (SNc) and fibers in the striatum. The GP firing rate decreased significantly with no significant change of the pattern. 6-OHDA injection into the SNc induced a total or subtotal lesion without any change in the firing rate and patterns of GP neurons. ⋯ We showed that the pathological activity of STN neurons after severe lesion is not mediated by the GP. Moreover, the unchanged activity of GP neurons is likely to be a consequence of the STN hyperactivity. These data suggest that in the GP-STN-GP network, the excitatory influence of the STN-GP pathway overrides that of the GABAergic GP-STN pathway, questioning the classical model of basal ganglia organization.