Experimental neurology
-
Experimental neurology · Feb 2006
Comparative StudyDietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition.
The pervasive action of oxidative stress on neuronal function and plasticity after traumatic brain injury (TBI) is becoming increasingly recognized. Here, we evaluated the capacity of the powerful antioxidant curry spice curcumin ingested in the diet to counteract the oxidative damage encountered in the injured brain. In addition, we have examined the possibility that dietary curcumin may favor the injured brain by interacting with molecular mechanisms that maintain synaptic plasticity and cognition. ⋯ Furthermore, curcumin supplementation counteracted the cognitive impairment caused by TBI. These results are in agreement with previous evidence, showing that oxidative stress can affect the injured brain by acting through the BDNF system to affect synaptic plasticity and cognition. The fact that oxidative stress is an intrinsic component of the neurological sequel of TBI and other insults indicates that dietary antioxidant therapy is a realistic approach to promote protective mechanisms in the injured brain.
-
Experimental neurology · Feb 2006
Comparative StudyCaspase inhibition therapy abolishes brain trauma-induced increases in Abeta peptide: implications for clinical outcome.
The detrimental effects of traumatic brain injury (TBI) on brain tissue integrity involve progressive axonal damage, necrotic cell loss, and both acute and delayed apoptotic neuronal death due to activation of caspases. Post-injury accumulation of amyloid precursor protein (APP) and its toxic metabolite amyloid-beta peptide (Abeta) has been implicated in apoptosis as well as in increasing the risk for developing Alzheimer's disease (AD) after TBI. Activated caspases proteolyze APP and are associated with increased Abeta production after neuronal injury. ⋯ Post-CCI intervention with intracerebroventricular injection of 100 nM Boc-Asp(OMe)-CH(2)F (BAF, a pan-caspase inhibitor) significantly reduced caspase-3 activation and improved histological outcome, suppressed increases in Abeta and caspase-cleaved APP, but showed no significant effect on overall APP levels in the hippocampus after CCI. These data demonstrate that after TBI, caspase inhibition can suppress elevations in Abeta. The extent to which Abeta suppression contributes to improved outcome following inhibition of caspases after TBI is unclear, but such intervention may be a valuable therapeutic strategy for preventing the long-term evolution of Abeta-mediated pathology in TBI patients who are at risk for developing AD later in life.
-
Experimental neurology · Feb 2006
Comparative StudySimultaneous functional magnetic resonance imaging in the rat spinal cord and brain.
Functional magnetic resonance imaging (fMRI) method was developed to investigate the pattern and temporal relationship in neuronal pathways of brain and spinal cord. Signal intensity changes correlating with stimulation patterns were observed simultaneously in the rat spinal cord and brain using fMRI at 9.4 T. Electrical stimulation of the forepaw was used to elicit activity. ⋯ Sets of fast spin echo (FSE) images were acquire simultaneously for both brain and spinal cord fMRI. Experiments were repeated in single animal and across animals. Activities within the dorsal horn of the spinal cord and within the somatosensory cortex were observed consistently within each animal as well as across animals.
-
Experimental neurology · Feb 2006
Comparative StudyNerve growth factor regulates substance P in adult sensory neurons through both TrkA and p75 receptors.
Expression of the nociceptive peptide, substance P (SP) is regulated by the neurotrophin, nerve growth factor (NGF), and exogenous exposure to high levels of NGF increases its cellular content and release. NGF utilizes two receptors, the NGF-specific tyrosine kinase receptor, TrkA, and also the non-specific neurotrophin receptor, p75(NTR) (p75). The purpose of this study is to determine the relative involvement of these receptors in nociception. ⋯ The antiserum neither impacted neuronal survival or basal levels of SP expression, nor did it inhibit SP up-regulation induced by forskolin. Two other neurotrophins, which are also ligands for p75, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) did not block NGF-induced SP up-regulation, raising the possibility that activated p75 is able to cooperate in SP regulation regardless of which neurotrophin ligand occupies it. Our data suggest that NGF up-regulation of SP expression requires the involvement of both TrkA and p75, although the specific contribution of each receptor to SP signaling remains to be determined.
-
Experimental neurology · Feb 2006
Comparative StudyMorris water maze search strategy analysis in PDAPP mice before and after experimental traumatic brain injury.
Traumatic brain injury (TBI) is a common cause of cognitive dysfunction and a major risk factor for Alzheimer's disease (AD). PDAPP mice, a transgenic line overexpressing a mutant human amyloid precursor protein (APP) implicated in familial AD, have markedly impaired behavioral performance in the Morris water maze relative to wild-type (WT) littermates. Performance further deteriorates following experimental TBI in both PDAPP and WT mice. ⋯ We also analyzed changes in the efficiency with which mice used each individual strategy, but found that differences in which strategies were used quantitatively accounted for most of the differences in performance between groups. These results demonstrate that suboptimal search strategy use in addition to effects on spatial learning and memory underlies the impaired performance of PDAPP mice and further deterioration following TBI. Human TBI patients may have analogous poor use of problem solving strategies.