Experimental neurology
-
Experimental neurology · Jun 2017
Defining the biomechanical and biological threshold of murine mild traumatic brain injury using CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration).
CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration) is a recently described animal model of traumatic brain injury (TBI) that primarily produces diffuse axonal injury (DAI) characterized by white matter inflammation and axonal damage. CHIMERA was specifically designed to reliably generate a variety of TBI severities using precise and quantifiable biomechanical inputs in a nonsurgical user-friendly platform. The objective of this study was to define the lower limit of single impact mild TBI (mTBI) using CHIMERA by characterizing the dose-response relationship between biomechanical input and neurological, behavioral, neuropathological and biochemical outcomes. ⋯ Impact energies of 0.4J or below produced no significant phenotype (subthreshold), 0.5J led to significant changes for one or more phenotypes (threshold), and 0.6 and 0.7J resulted in significant changes in all outcomes assessed (mTBI). We further show that linear head kinematics are the most robust predictors of duration of unconsciousness, severity of neurological deficits, white matter injury, and microgliosis following single TBI. Our data extend the validation of CHIMERA as a biofidelic animal model of DAI and establish working parameters to guide future investigations of the mechanisms underlying axonal pathology and inflammation induced by mechanical trauma.
-
Experimental neurology · May 2017
Electrical neuromodulation of the cervical spinal cord facilitates forelimb skilled function recovery in spinal cord injured rats.
Enabling motor control by epidural electrical stimulation of the spinal cord is a promising therapeutic technique for the recovery of motor function after a spinal cord injury (SCI). Although epidural electrical stimulation has resulted in improvement in hindlimb motor function, it is unknown whether it has any therapeutic benefit for improving forelimb fine motor function after a cervical SCI. We tested whether trains of pulses delivered at spinal cord segments C6 and C8 would facilitate the recovery of forelimb fine motor control after a cervical SCI in rats. ⋯ Forelimb performance was similar when tested at stimulation frequencies of 20, 40, and 60Hz. We also found that the EMG activity in most forelimb muscles as well as the co-activation between flexor and extensor muscles increased post-injury. With epidural stimulation, however, this trend was reversed indicating that cervical epidural spinal cord stimulation has therapeutic potential for rehabilitation after a cervical SCI.
-
Experimental neurology · Apr 2017
Rapid neuroinflammatory response localized to injured neurons after diffuse traumatic brain injury in swine.
Despite increasing appreciation of the critical role that neuroinflammatory pathways play in brain injury and neurodegeneration, little is known about acute microglial reactivity following diffuse traumatic brain injury (TBI) - the most common clinical presentation that includes all concussions. Therefore, we investigated acute microglial reactivity using a porcine model of closed-head rotational velocity/acceleration-induced TBI that closely mimics the biomechanical etiology of inertial TBI in humans. We observed rapid microglial reactivity within 15min of both mild and severe TBI. ⋯ However, microglia density increased and morphology shifted to become more reactive in proximity to injured neurons. Microglial reactivity around injured neurons was exacerbated following repetitive TBI, suggesting further amplification of acute neuroinflammatory responses. These results indicate that neuronal trauma rapidly activates microglia in a highly localized manner, and suggest that activated microglia may rapidly influence neuronal stability and/or pathophysiology after diffuse TBI.
-
Experimental neurology · Mar 2017
Disinhibition of the intergeniculate leaflet network in the WAG/Rij rat model of absence epilepsy.
The intergeniculate leaflet (IGL) of the thalamus is a retinorecipient structure implicated in orchestrating circadian rhythmicity. The IGL network is highly GABAergic and consists mainly of neuropeptide Y-synthesising and enkephalinergic neurons. A high density of GFAP-immunoreactive astrocytes has been observed in the IGL, with a probable function in guarding neuronal inhibition. ⋯ Moreover, our in vivo extracellular recordings showed higher firing rate of ISO IGL neurons with an abnormal reaction to a change in constant illumination (maintenance of rhythmic neuronal activity in darkness) in the AE model. Additional immunohistochemical experiments indicated astrogliosis in the area of the IGL, which may partially underlie the observed changes in inhibition. Altogether, the data presented here show for the first time the disinhibition of IGL neurons in a model of AE, thereby proposing the possible involvement of circadian-related brain structures in the epileptic phenotype.
-
Experimental neurology · Mar 2017
Neuropathology and neurobehavioral alterations in a rat model of traumatic brain injury to occupants of vehicles targeted by underbody blasts.
Many victims of blast-induced traumatic brain injury are occupants of military vehicles targeted by land mines. Recently improved vehicle designs protect these individuals against blast overpressure, leaving acceleration as the main force potentially responsible for brain injury. We recently developed a unique rat model of under-vehicle blast-induced hyperacceleration where exposure to acceleration as low as 50G force results in histopathological evidence of diffuse axonal injury and astrocyte activation, with no evidence of neuronal cell death. ⋯ All rats exposed to 2400G acceleration survived and exhibited transient deficits in working memory and long-term anxiety like behaviors, while those exposed to 1200 acceleration G force only demonstrated increased anxiety. Behavioral deficits were associated with acute microglia/macrophage activation, increased hippocampal neuronal death, and reduced levels of tight junction- and synapse- associated proteins. Taken together, these results suggest that exposure of rats to high underbody blast-induced G forces results in neurologic injury accompanied by neuronal apoptosis, neuroinflammation and evidence for neurosynaptic alterations.