Experimental neurology
-
Experimental neurology · Aug 2016
Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury.
Spinal cord injury (SCI) promotes inflammation along the neuroaxis that jeopardizes plasticity, intrinsic repair and recovery. While inflammation at the injury site is well-established, less is known within remote spinal networks. The presence of bone marrow-derived immune (myeloid) cells in these areas may further impede functional recovery. ⋯ This cell infiltration occurred when the blood-spinal cord barrier was intact, suggesting active recruitment across the endothelium. Myeloid cells persisted as ramified macrophages at 7days post injury in parallel with increased inhibitory GAD67 labeling. Importantly, macrophage infiltration required MMP-9.
-
Experimental neurology · Aug 2016
The α9α10 nicotinic receptor antagonist α-conotoxin RgIA prevents neuropathic pain induced by oxaliplatin treatment.
Oxaliplatin, a third-generation diaminocyclohexane platinum drug, is widely used alone or in combination with 5-fluorouracil and leucovorin to treat metastatic colorectal, ovarian, and pancreatic cancers. Oxaliplatin long-term treatment is associated with the development of a dose-limiting painful neuropathy that dramatically impairs the patient's quality of life and therapy possibility. To study novel strategies to treat oxaliplatin-induced neuropathy, we evaluated α-conotoxin RgIA, a peptide that potently blocks the α9α10 nicotinic acetylcholine receptor (nAChR) subtype in a rat model of oxaliplatin-dependent neurotoxicity (2.4mgkg(-1) oxaliplatin intraperitoneally daily for 21days). ⋯ Moreover, morphological modifications of L4-L5 dorsal root ganglia were significantly prevented. In the spinal cord the numerical increase of astrocyte cell density present in oxaliplatin-treated rats is partially prevented by RgIA treatment. Nevertheless, the administration of the α-conotoxin is able per se to elicit a numerical increase and a morphological activation of microglia and astrocytes in specific brain areas.
-
Experimental neurology · Jul 2016
Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury.
Traumatic brain injury (TBI) in humans can result in permanent tissue damage and has been linked to cognitive impairment that lasts years beyond the initial insult. Clinically effective treatment strategies have yet to be developed. Transplantation of human neural stem cells (hNSCs) has the potential to restore cognition lost due to injury, however, the vast majority of rodent TBI/hNSC studies to date have evaluated cognition only at early time points, typically <1month post-injury and cell transplantation. ⋯ Furthermore, while this model of TBI (cortical impact) targets primarily cortex and the underlying hippocampus and generates a large lesion cavity, hNSC transplantation facilitated cognitive recovery without affecting either lesion volume or total spared cortical or hippocampal tissue volume. Instead, we have found an overall increase in host hippocampal neuron survival in hNSC transplanted animals and demonstrate that a correlation exists between hippocampal neuron survival and cognitive performance. Together, these findings support the use of immunodeficient rodents in models of TBI that involve the transplantation of human cells, and suggest that hNSC transplantation may be a viable, long-term therapy to restore cognition after brain injury.
-
Experimental neurology · May 2016
Rho kinase inhibition following traumatic brain injury in mice promotes functional improvement and acute neuron survival but has little effect on neurogenesis, glial responses or neuroinflammation.
Inhibition of the Rho/Rho kinase pathway has been shown to be beneficial in a variety of neural injuries and diseases. In this manuscript we investigate the role of Rho kinase inhibition in recovery from traumatic brain injury using a controlled cortical impact model in mice. Mice subjected to a moderately severe TBI were treated for 1 or 4 weeks with the Rho kinase inhibitor Y27632, and functional outcomes and neuronal and glial cell responses were analysed at 1, 7 and 35 days post-injury. ⋯ While Rho kinase inhibition enhanced recovery of motor function after trauma, there were no substantial increases in the recruitment of DCX(+) neuroblasts or the number of BrdU(+) or EdU(+) labelled newborn neurons in the pericontusional cortex of Y27632-treated mice. Inhibition of Rho kinase significantly reduced the number of degenerating cortical neurons at 1day post-injury compared to saline controls but had no longer term effect on neuronal degeneration, with only modest effects on astrocytic reactivity and macrophage/microglial responses. Overall, this study showed that Rho kinase contributes to acute neurodegenerative processes in the injured cortex but does not play a significant role in SVZ neural precursor cell-derived adult neurogenesis, glial responses or blood-brain barrier permeability following a moderately severe brain injury.
-
Experimental neurology · May 2016
Loss of Ca(2+)-permeable AMPA receptors in synapses of tonic firing substantia gelatinosa neurons in the chronic constriction injury model of neuropathic pain.
Synapses transmitting nociceptive information in the spinal dorsal horn undergo enduring changes following peripheral nerve injury. Indeed, such injury alters the expression of the GluA2 subunit of glutamatergic AMPA receptors (AMPARs) in the substantia gelatinosa and this predicts altered channel conductance and calcium permeability, leading to an altered function of excitatory synapses. We therefore investigated the functional properties of synaptic AMPA receptors in rat substantia gelatinosa neurons following 10-20d chronic constriction injury (CCI) of the sciatic nerve; a model of neuropathic pain. ⋯ By contrast, CCI did not change the effectiveness of IEM1460 in delay firing neurons although average single channel conductance was increased from 7.6±1.2pS (n=11) to 12.2±1.5pS (n=10, p<0.01). CCI thus elicits plastic changes in a specific set of glutamatergic synapses of substantia gelatinosa due to subunit recomposition and loss of GluA2-lacking CP-AMPAR. These insights reveal a molecular mechanism of nerve injury acting at synapses of inhibitory neurons to reduce their drive and therefore inhibitory tone in the spinal cord, therefore contributing to the central sensitization associated with neuropathic pain.