Experimental neurology
-
Experimental neurology · Mar 2016
Effects of serum immunoglobulins from patients with complex regional pain syndrome (CRPS) on depolarisation-induced calcium transients in isolated dorsal root ganglion (DRG) neurons.
Complex regional pain syndrome (CRPS) is thought to have an auto-immune component. One such target recently proposed from the effects of auto-immune IgGs on Ca(2+) transients in cardiac myocytes and cell lines is the α1-adrenoceptor. We have tested whether such IgGs exerted comparable effects on nociceptive sensory neurons isolated from rat dorsal root ganglia. ⋯ However, IgG from one CRPS patient consistently and significantly reduced the K(+)-induced response of cells that had been pre-incubated for 24h with a mixture of inflammatory mediators (1 μM histamine, 5-hydroxytryptamine, bradykinin and PGE2). Since this pre-incubation also appeared to induce a comparable inhibitory response to the α1-agonist phenylephrine, this is compatible with the α1-adrenoceptor as a target for CRPS auto-immunity. A mechanism whereby this might enhance pain is suggested.
-
Experimental neurology · Feb 2016
Riluzole promotes motor and respiratory recovery associated with enhanced neuronal survival and function following high cervical spinal hemisection.
Cervical spinal cord injury (SCI) can result in devastating functional deficits that involve the respiratory and hand function. The mammalian spinal cord has limited ability to regenerate and restore meaningful functional recovery following SCI. Riluzole, 2-amino-6-trifluoromethoxybenzothiazole, an anti-glutamatergic drug has been shown to reduce excitotoxicity and confer neuroprotection at the site of injury following experimental SCI. ⋯ Disruption of descending input led to a decrease in glutamatergic synapses and motoneurons caudal to the injury while riluzole treatment significantly limited this decline. Functionally, Hoffmann reflex recordings revealed an increase in the excitability of the remaining ipsilateral cervical motoneurons and significant improvements in skilled and unskilled forelimb function and respiratory motor function in the riluzole-treated animals. In conclusion, using a C2 hemisection injury model, this study provides novel evidence of motoneuron loss caudal to the injury and supports riluzole's capacity to promote neuronal preservation and function of neural network caudal to the SCI resulting in early and sustained functional improvements.
-
Experimental neurology · Jan 2016
ReviewPolypathology and dementia after brain trauma: Does brain injury trigger distinct neurodegenerative diseases, or should they be classified together as traumatic encephalopathy?
Neuropathological studies of human traumatic brain injury (TBI) cases have described amyloid plaques acutely after a single severe TBI, and tau pathology after repeat mild TBI (mTBI). This has helped drive the hypothesis that a single moderate to severe TBI increases the risk of developing late-onset Alzheimer's disease (AD), while repeat mTBI increases the risk of developing chronic traumatic encephalopathy (CTE). In this review we critically assess this position-examining epidemiological and case control human studies, neuropathological evidence, and preclinical data. ⋯ The chronic sequelae of both single TBI and repeat mTBI share common neuropathological features and clinical symptoms of classically defined neurodegenerative disorders. However, while the spectrum of chronic cognitive and neurobehavioral disorders that occur following repeat mTBI is viewed as the symptoms of CTE, the spectrum of chronic cognitive and neurobehavioral symptoms that occur after a single TBI is considered to represent distinct neurodegenerative diseases such as AD. These data support the suggestion that the multiple manifestations of TBI-induced neurodegenerative disorders be classified together as traumatic encephalopathy or trauma-induced neurodegeneration, regardless of the nature or frequency of the precipitating TBI.
-
Experimental neurology · Jan 2016
Brainstem node for loss of consciousness due to GABA(A) receptor-active anesthetics.
The molecular agents that induce loss of consciousness during anesthesia are classically believed to act by binding to cognate transmembrane receptors widely distributed in the CNS and critically suppressing local processing and network connectivity. However, previous work has shown that microinjection of anesthetics into a localized region of the brainstem mesopontine tegmentum (MPTA) rapidly and reversibly induces anesthesia in the absence of global spread. This implies that functional extinction is determined by neural pathways rather than vascular distribution of the anesthetic agent. ⋯ Combined with the prior microinjection data, we conclude that drug delivery to the MPTA is sufficient to induce loss-of-consciousness and that neurons in this locus are necessary for anesthetic induction at clinically relevant doses. Together, the results support an architecture for anesthesia with the MPTA serving as a key node in an endogenous network of dedicated pathways that switch between wake and unconsciousness. As such, the MPTA might also play a role in syncope, concussion and sleep.
-
Experimental neurology · Jan 2016
Repetitive mild traumatic brain injury with impact acceleration in the mouse: Multifocal axonopathy, neuroinflammation, and neurodegeneration in the visual system.
Repetitive mild traumatic brain injury (mTBI) is implicated in chronic neurological illness. The development of animal models of repetitive mTBI in mice is essential for exploring mechanisms of these chronic diseases, including genetic vulnerability by using transgenic backgrounds. In this study, the rat model of impact acceleration (IA) was redesigned for the mouse cranium and used in two clinically relevant repetitive mTBI paradigms. ⋯ Our findings establish a new model of repetitive mTBI model featured by TAI in discrete CNS tracts, especially the visual system and cerebellum. Injury in retina and optic nerve provides a sensitive measure of severity of mTBI, thus enabling further studies on mechanisms and experimental therapeutics. Our model can also be useful in exploring mechanisms of chronic neurological disease caused by repetitive mTBI in wild-type and transgenic mice.