Experimental neurology
-
Experimental neurology · Jul 2015
Post-trauma administration of the pifithrin-α oxygen analog improves histological and functional outcomes after experimental traumatic brain injury.
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Programmed death of neuronal cells plays a crucial role in acute and chronic neurodegeneration following TBI. The tumor suppressor protein p53, a transcription factor, has been recognized as an important regulator of apoptotic neuronal death. ⋯ PFT-α (O) treatment also decreased phospho-p53 positive neurons in the cortical contusion region. Our data suggest that PFT-α (O) provided a significant reduction of cortical cell death and protected neurons from glutamate-induced excitotoxicity in vitro, as well as improved neurological functional outcome and reduced brain injury in vivo via anti-apoptotic mechanisms. The inhibition of p53-induced apoptosis by PFT-α (O) provides a useful tool to evaluate reversible apoptotic mechanisms and may develop into a novel therapeutic strategy for TBI.
-
Experimental neurology · Jul 2015
Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats.
Functional recovery after peripheral nerve injury and surgical repair declines with time and distance because the injured neurons without target contacts (chronic axotomy) progressively lose their regenerative capacity and chronically denervated Schwann cells (SCs) atrophy and fail to support axon regeneration. Findings that brief low frequency electrical stimulation (ES) accelerates axon outgrowth and muscle reinnervation after immediate nerve surgery in rats and human patients suggest that ES might improve regeneration after delayed nerve repair. To test this hypothesis, common peroneal (CP) neurons were chronically axotomized and/or tibial (TIB) SCs and ankle extensor muscles were chronically denervated by transection and ligation in rats. ⋯ Muscle and motor unit forces recorded to determine the numbers of neurons that reinnervated gastrocnemius muscle demonstrated that ES significantly increased the numbers of motoneurons that reinnervated chronically denervated muscles. We conclude that electrical stimulation of chronically axotomized motor and sensory neurons is effective in accelerating axon outgrowth into chronically denervated nerve stumps and improving target reinnervation after delayed nerve repair. Possible mechanisms for the efficacy of ES in promoting axon regeneration and target reinnervation after delayed nerve repair include the upregulation of neurotrophic factors.
-
Experimental neurology · May 2015
Pharmacologically induced hypothermia attenuates traumatic brain injury in neonatal rats.
Neonatal brain trauma is linked to higher risks of mortality and neurological disability. The use of mild to moderate hypothermia has shown promising potential against brain injuries induced by stroke and traumatic brain injury (TBI) in various experimental models and in clinical trials. Conventional methods of physical cooling, however, are difficult to use in acute treatments and in induction of regulated hypothermia. ⋯ In addition, HPI201 prevented the up-regulation of pro-inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6. In sensorimotor activity assessments, rats in the HPI201 treated group exhibited improved functional recovery after TBI versus controls. These data support that PIH therapy using our NTR agonist is effective in reducing neuronal and BBB damage, attenuating inflammatory response and detrimental cellular signaling, and promoting functional recovery after TBI in the developing brain, supporting its potential for further evaluation towards clinical development.
-
Experimental neurology · May 2015
NMDA receptor blockade in the developing cortex induces autophagy-mediated death of immature cortical GABAergic interneurons: An ex vivo and in vivo study in Gad67-GFP mice.
In neonates, excitotoxicity is a major process involved in hypoxic-ischemic brain lesions, and several research groups have suggested the use of NMDA antagonists for neuroprotection. However, despite their clinical interest, there is more and more evidence suggesting that, in the immature brain, these molecules exert deleterious actions on migrating GABAergic interneurons by suppressing glutamatergic trophic inputs. Consequently, preventing the side effects of NMDA antagonists would be therapeutically useful. ⋯ Together, these data suggest that, in the developing cortex, the suppression of glutamatergic inputs through NMDA receptor inhibition results in the impairment of the autophagic flux and the subsequent switch to apoptotic death of immature GABAergic interneurons. The concomitant inhibition of autophagy prevents this pro-apoptotic action of the NMDA blocker and favors the long-term rescue of GABAergic interneurons without interfering with its neuroprotective actions. The use of autophagy modulators in the developing brain would create new opportunities to prevent the side effects of NMDA antagonists used for neuroprotection or anesthesia.
-
Experimental neurology · May 2015
Diffuse and persistent blood-spinal cord barrier disruption after contusive spinal cord injury rapidly recovers following intravenous infusion of bone marrow mesenchymal stem cells.
Intravenous infusion of mesenchymal stem cells (MSCs) has been shown to reduce the severity of experimental spinal cord injury (SCI), but mechanisms are not fully understood. One important consequence of SCI is damage to the microvasculature and disruption of the blood spinal cord barrier (BSCB). In the present study we induced a contusive SCI at T9 in the rat and studied the effects of intravenous MSC infusion on BSCB permeability, microvascular architecture and locomotor recovery over a 10week period. ⋯ Contused spinal cords also showed an increase in vessel size, reduced vessel number, dissociation of pericytes from microvessels and decreases in von Willebrand factor (vWF) and endothelial barrier antigen (EBA) expression. In MSC-treated rats, BSCB leakage was reduced, vWF expression was increased and locomotor function improved beginning 1 week post-MSC infusion, i.e., 2weeks post-SCI. These results suggest that intravenously delivered MSCs have important effects on reducing BSCB leakage which could contribute to their therapeutic efficacy.