Experimental neurology
-
Experimental neurology · Nov 2014
Pre-administration of G9a/GLP inhibitor during synaptogenesis prevents postnatal ethanol-induced LTP deficits and neurobehavioral abnormalities in adult mice.
It has been widely accepted that deficits in neuronal plasticity underlie the cognitive abnormalities observed in fetal alcohol spectrum disorder (FASD). Exposure of rodents to acute ethanol on postnatal day 7 (P7), which is equivalent to the third trimester of fetal development in human, induces long-term potentiation (LTP) and memory deficits in adult animals. However, the molecular mechanisms underlying these deficits are not well understood. ⋯ Here, we tested the hypothesis that pre-administration of G9a/GLP inhibitor (Bix-01294, Bix) in conditions in which ethanol induces neurodegeneration would be neuroprotective against P7 ethanol-induced deficits in LTP, memory and social recognition behavior in adult mice. Ethanol treatment at P7 induces deficits in LTP, memory and social recognition in adult mice and these deficits were prevented by Bix pretreatment at P7. Together, these findings provide physiological and behavioral evidence that the long-term harmful consequences on brain function after ethanol exposure with a third trimester equivalent have an epigenetic origin.
-
Experimental neurology · Nov 2014
The RNA-binding protein HuD promotes spinal GAP43 overexpression in antiretroviral-induced neuropathy.
Nucleoside reverse transcriptase inhibitors (NRTIs) are known to produce painful neuropathies and to enhance states of pain hypersensitivity produced by HIV-1 infection in patients with AIDS leading to discontinuation of antiretroviral therapy, thus limiting viral suppression strategies. The mechanisms by which NRTIs contribute to the development of neuropathic pain are not known. In the current study, we tested the hypothesis that HuD, an RNA binding protein known to be an essential promoter of neuronal differentiation and survival, might be involved in the response to NRTI-induced neuropathy. ⋯ The administration of a protein kinase C (PKC) inhibitor or the PKCγ silencing prevented both HuD and GAP43 increased expression. Conversely, treatment with the PKC activator PDBu potentiated HuD and GAP43 overexpression, demonstrating the presence of a spinal PKC-dependent HuD-GAP43 pathway activated by ddC. These results indicated that HuD recruitment and GAP43 protein increase are mechanistically linked events involved in the response to antiretroviral-induced neurodegenerative processes.
-
Experimental neurology · Nov 2014
Injection of WGA-Alexa 488 into the ipsilateral hemidiaphragm of acutely and chronically C2 hemisected rats reveals activity-dependent synaptic plasticity in the respiratory motor pathways.
WGA-Alexa 488 is a fluorescent neuronal tracer that demonstrates transsynaptic transport in the central nervous system. The transsynaptic transport occurs over physiologically active synaptic connections rather than less active or silent connections. Immediately following C2 spinal cord hemisection (C2Hx), when WGA-Alexa 488 is injected into the ipsilateral hemidiaphragm, the tracer diffuses across the midline of the diaphragm and retrogradely labels the phrenic nuclei (PN) bilaterally in the spinal cord. ⋯ The selective WGA-Alexa 488 labeling of additional locations in the chronic C2Hx model is presumably due to a hyperactive state of the synaptic pathways and nuclei previously shown to connect with the respiratory centers in a non-injured model. The present study suggests that hyperactivity not only occurs in neuronal centers and pathways caudal to spinal cord injury, but in supraspinal centers as well. The significance of such injury-induced plasticity is that hyperactivity may be a mechanism to re-establish lost function by compensatory routes which were initially physiologically inactive.
-
Experimental neurology · Nov 2014
Comparative StudyA comparative morphological, electrophysiological and functional analysis of axon regeneration through peripheral nerve autografts genetically modified to overexpress BDNF, CNTF, GDNF, NGF, NT3 or VEGF.
The clinical outcome of microsurgical repair of an injured peripheral nerve with an autograft is suboptimal. A key question addressed here is: can axon regeneration through an autograft be further improved? In this article the impact of six neurotrophic factors (BDNF, CNTF, GDNF, NGF, NT3 or VEGF) on axon regeneration was compared after delivery to a 1cm long nerve autograft by gene therapy. To distinguish between early and late effects, regeneration was assessed at 2 and 20weeks post-surgery by histological, electrophysiological and functional analysis. ⋯ These three factors did not have detectable pro-regenerative effects. In conclusion, autograft-based repair combined with gene therapy for three of the six growth factors investigated (BDNF, GDNF, NGF) showed considerable promise since these factors enhanced modality specific axon outgrowth in autografts. The remarkable and selective effects of BDNF, GDNF and NGF on motor or sensory regeneration will be exploited in future experiments that aim to carefully regulate their temporal and spatial expression since this has the potential to overcome the adverse effects on long-distance regeneration observed after uncontrolled delivery.
-
Experimental neurology · Nov 2014
Low brain iron effects and reversibility on striatal dopamine dynamics.
Iron deficiency (ID) in rodents leads to decreased ventral midbrain (VMB) iron concentrations and to changes in the dopamine (DA) system that mimic many of the dopaminergic changes seen in RLS patient where low substantia nigra iron is a known pathology of the disease. The ID-rodent model, therefore, has been used to explore the effects that low VMB iron can have on striatal DA dynamics with the hopes of better understanding the nature of iron-dopamine interaction in Restless Legs Syndrome (RLS). Using a post-weaning, diet-induced, ID condition in rats, the No-Net-Flux microdialysis technique was used to examine the effect of ID on striatal DA dynamics and it reversibility with acute infusion of physiological concentrations of iron into the VMB. ⋯ In summary, the ID-rodent model provides highly reproducible changes in striatal DA dynamics that remarkably parallel dopaminergic changes seen in RLS patients. Some but not all of these ID-induced changes in striatal DA dynamics were reversible with physiological increases in VMB iron. The small changes in VMB iron induced by iron infusion likely represent biologically relevant changes in the non-transferrin-bound labile iron pool and may mimic circadian-dependent changes that have been found in VBM extracellular iron.