Experimental neurology
-
Experimental neurology · Nov 2013
Adult motor axons preferentially reinnervate predegenerated muscle nerve.
Preferential motor reinnervation (PMR) is the tendency for motor axons regenerating after repair of mixed nerve to reinnervate muscle nerve and/or muscle rather than cutaneous nerve or skin. PMR may occur in response to the peripheral nerve pathway alone in juvenile rats (Brushart, 1993; Redett et al., 2005), yet the ability to identify and respond to specific pathway markers is reportedly lost in adults (Uschold et al., 2007). The experiments reported here evaluate the relative roles of pathway and end organ in the genesis of PMR in adult rats. ⋯ Comparison of the relative roles of pathway and end organ in generating PMR revealed that neither could be shown to be more important than the other. These experiments demonstrate unequivocally that adult muscle nerve and cutaneous nerve differ in qualities that can be detected by regenerating adult motoneurons and that can modify their subsequent behavior. They also reveal that two weeks of Wallerian degeneration modify the environment in the graft from one that provides no modality-specific cues for motor neurons to one that actively promotes PMR.
-
Experimental neurology · Nov 2013
Minocycline plus N-acetylcysteine synergize to modulate inflammation and prevent cognitive and memory deficits in a rat model of mild traumatic brain injury.
Traumatic brain injury (TBI) differs in severity from severe to mild. This study examined whether a combination of the drugs minocycline (MINO) plus N-acetylcysteine (NAC) produces behavioral and histological improvements in a mild version of the controlled cortical impact model of TBI (mCCI). Following mCCI, rats acquired an active place avoidance task by learning the location of a stationary shock zone on a rotating arena. ⋯ MINO plus NAC acted synergistically to increase Iba-1 expression since MINO alone suppressed expression and NAC alone had no effect. Despite the known anti-inflammatory actions of the individual drugs, MINO plus NAC appeared to modulate, rather than suppress neuroinflammation. This modulation of neuroinflammation may underlie the synergistic improvement in memory and set-shifting by the drug combination after mCCI.
-
Experimental neurology · Nov 2013
Phrenic motoneuron discharge patterns following chronic cervical spinal cord injury.
Cervical spinal cord injury (SCI) dramatically disrupts synaptic inputs and triggers biochemical, as well as morphological, plasticity in relation to the phrenic motor neuron (PhMN) pool. Accordingly, our primary purpose was to determine if chronic SCI induces fundamental changes in the recruitment profile and discharge patterns of PhMNs. Individual PhMN action potentials were recorded from the phrenic nerve ipsilateral to lateral cervical (C2) hemisection injury (C2Hx) in anesthetized adult male rats at 2, 4 or 8 wks post-injury and in uninjured controls. ⋯ Compared to control rats, as PETCO2 declined, the C2Hx animals had greater inspiratory frequencies (breaths∗min(-1)) and more substantial decreases in ipsilateral phrenic burst amplitude. We conclude that the primary physiological impact of C2Hx on ipsilateral PhMN burst patterns is a persistent delay in burst onset, transient reductions in burst frequency, and the emergence of tonic burst patterns. The inspiratory frequency data suggest that plasticity in brainstem networks is likely to play an important role in phrenic motor output after cervical SCI.
-
Experimental neurology · Oct 2013
A non-cholinergic neuronal loss in the pedunculopontine nucleus of toxin-evoked parkinsonian rats.
The pedunculopontine nucleus (PPN) controls various physiological functions, whilst being deemed a suitable target for low-frequency stimulation therapy for alleviating aspects of Parkinson's disease (PD). Previous studies showed that the PPN contains mainly cholinergic, γ-aminobutyric acid (GABA)ergic and glutamatergic neurons. Here we report on the total number of PPN neurons in laboratory rats, a species frequently used as an experimental model for simulating aspects of human PD. ⋯ Our data also show a significant loss which affected PPN non-cholinergic cells, but not cholinergic ones in rats lesioned unilaterally in the Substantia Nigra pars compacta (SNpc) with a single injection of 6-hydroxydopamine (6-OHDA) compared to control animals. This result differs from previous studies which reported a substantial cholinergic cell loss in the PPN of post-mortem PD brains and in 6-OHDA-lesioned monkeys. Since a noted demise of dopaminergic neurons residing in the SN was confirmed in the 6-OHDA-lesioned rats, the current study suggests that a "dying-back" mechanism may underlie the cell death affecting non-cholinergic PPN neurons.
-
Experimental neurology · Oct 2013
A re-assessment of the effects of treatment with a non-steroidal anti-inflammatory (ibuprofen) on promoting axon regeneration via RhoA inhibition after spinal cord injury.
This study was undertaken as part of the NIH "Facilities of Research Excellence-Spinal Cord Injury" project to support independent replication of published studies. Here, we repeat key parts of a study reporting that rats treated with ibuprofen via subcutaneous minipump exhibited greater recovery of motor function and enhanced axonal growth after spinal cord injury. We carried out 3 separate experiments in which young adult female Sprague-Dawley rats received dorsal over-hemisections at T6-T7, and then were implanted with osmotic minipumps for subcutaneous delivery of ibuprofen or saline. ⋯ Rats that received Ibuprofen did not demonstrate statistically significant improvements in bladder function. Quantitative analyses of CST and 5HT axon distribution also did not reveal differences between ibuprofen-treated and control rats. Taken together, our results only partially replicate the findings that treatment with ibuprofen improves motor function after SCI but fail to replicate findings regarding enhanced axon growth.