Experimental neurology
-
Experimental neurology · Oct 2013
A non-cholinergic neuronal loss in the pedunculopontine nucleus of toxin-evoked parkinsonian rats.
The pedunculopontine nucleus (PPN) controls various physiological functions, whilst being deemed a suitable target for low-frequency stimulation therapy for alleviating aspects of Parkinson's disease (PD). Previous studies showed that the PPN contains mainly cholinergic, γ-aminobutyric acid (GABA)ergic and glutamatergic neurons. Here we report on the total number of PPN neurons in laboratory rats, a species frequently used as an experimental model for simulating aspects of human PD. ⋯ Our data also show a significant loss which affected PPN non-cholinergic cells, but not cholinergic ones in rats lesioned unilaterally in the Substantia Nigra pars compacta (SNpc) with a single injection of 6-hydroxydopamine (6-OHDA) compared to control animals. This result differs from previous studies which reported a substantial cholinergic cell loss in the PPN of post-mortem PD brains and in 6-OHDA-lesioned monkeys. Since a noted demise of dopaminergic neurons residing in the SN was confirmed in the 6-OHDA-lesioned rats, the current study suggests that a "dying-back" mechanism may underlie the cell death affecting non-cholinergic PPN neurons.
-
Experimental neurology · Oct 2013
Sensitization of sodium channels by cystathionine β-synthetase activation in colon sensory neurons in adult rats with neonatal maternal deprivation.
The pathogenesis of pain in irritable bowel syndrome (IBS) is poorly understood and treatment remains difficult. We have previously reported that TTX-resistant (TTX-R) sodium channels in colon-specific dorsal root ganglion (DRG) neurons were sensitized and the expression of the endogenous hydrogen sulfide producing enzyme cystathionine β-synthetase (CBS) was upregulated in a rat model of visceral hypersensitivity induced by neonatal maternal deprivation (NMD). However, the detailed molecular mechanism for activation of sodium channels remains unknown. This study was designed to examine roles for CBS-H₂S signaling in sensitization of sodium channels in a previously validated rat model of IBS. ⋯ These data suggest that sensitization of sodium channels of colon DRG neurons in NMD rats is most likely mediated by CBS-H₂S signaling, thus identifying a potential target for treatment for chronic visceral pain in patients with IBS.
-
Experimental neurology · Oct 2013
Burn injury-induced mechanical allodynia is maintained by Rac1-regulated dendritic spine dysgenesis.
Although nearly 11 million individuals yearly require medical treatment due to burn injuries and develop clinically intractable pain, burn injury-induced pain is poorly understood, with relatively few studies in preclinical models. To elucidate mechanisms of burn injury-induced chronic pain, we utilized a second-degree burn model, which produces a persistent neuropathic pain phenotype. Rats with burn injury exhibited reduced mechanical pain thresholds ipsilateral to the burn injury. ⋯ Heat hyperalgesia testing produced variable results, as expected from previous studies of this model of second-degree burn injury in rats. Administration of Rac1-inhibitor, NSC23766, attenuated dendritic spine dysgenesis, decreased mechanical allodynia and electrophysiological signs of burn-induced neuropathic pain. These results support two related implications: that the presence of abnormal dendritic spines contributes to the maintenance of neuropathic pain, and that therapeutic targeting of Rac1 signaling merits further investigation as a novel strategy for pain management after burn injury.
-
Experimental neurology · Oct 2013
The role of the crossed phrenic pathway after cervical contusion injury and a new model to evaluate therapeutic interventions.
More than 50% of all spinal cord injury (SCI) cases are at the cervical level and usually result in the impaired ability to breathe. This is caused by damage to descending bulbospinal inspiratory tracts and the phrenic motor neurons which innervate the diaphragm. Most investigations have utilized a lateral C2 hemisection model of cervical SCI to study the resulting respiratory motor deficits and potential therapies. ⋯ This suggests an important modulatory role for these pathways. Additionally, we conclude that this dual injury, hemi-contusion and post contra-hemisection, is a more effective and relevant model of cervical SCI as it results in a more direct compromise of diaphragmatic motor activity. This model can thus be used to test potential therapies with greater accuracy and clinical relevance than cervical contusion models currently allow.
-
Experimental neurology · Oct 2013
Early cognitive changes due to whole body γ-irradiation: a behavioral and diffusion tensor imaging study in mice.
Radiation-induced aberration in the neuronal integrity and cognitive functions are well known. However, there is a lacuna between sparsely reported immediate effects and the well documented delayed effects of radiation on cognitive functions. The present study was aimed at investigating the radiation-dose dependent incongruities in the early cognitive changes, employing two approaches, behavioral functions and diffusion tensor imaging (DTI). ⋯ The hippocampus emerged as one of the sensitive regions to be affected by whole-body exposure to gamma rays, which led to profound immediate alterations in cognitive functions. Furthermore, the results indicate a cognitive recovery process, which might be dependent on the extent of damage to the hippocampal region. The present study also emphasizes the importance of further research to unravel the complex pattern of neurobehavioral responses immediately following ionizing radiation exposure.