Experimental neurology
-
Experimental neurology · Apr 2012
ReviewATP receptors gate microglia signaling in neuropathic pain.
Microglia were described by Pio del Rio-Hortega (1932) as being the 'third element' distinct from neurons and astrocytes. Decades after this observation, the function and even the very existence of microglia as a distinct cell type were topics of intense debate and conjecture. However, considerable advances have been made towards understanding the neurobiology of microglia resulting in a radical shift in our view of them as being passive bystanders that have solely immune and supportive roles, to being active principal players that contribute to central nervous system pathologies caused by disease or following injury. ⋯ Microglia express several P2 receptor subtypes, and of these the P2X4, P2X7, and P2Y12 receptor subtypes have been implicated in neuropathic pain. The P2X4 receptor has emerged as the core microglia-neuron signaling pathway: activation of this receptor causes release of brain-derived neurotrophic factor (BDNF) which causes disinhibition of pain-transmission neurons in spinal lamina I. The present review highlights recent advances in understanding the signaling and regulation of P2 receptors expressed in microglia and the implications for microglia-neuron interactions for the management of neuropathic pain.
-
Experimental neurology · Apr 2012
ReviewThe mechanisms of microgliosis and pain following peripheral nerve injury.
Microglia are the resident macrophages in the central nervous system (CNS). Any insult to the CNS homeostasis will induce a rapid change in microglia morphology, gene expression profile and functional behaviour. These responses of microglia have been collectively known as 'microgliosis'. ⋯ It should also be noted that in certain contexts microglia may have a role in the resolution of neuro-inflammation. Although there is still no direct evidence demonstrating that spinal microglia have a role in neuropathic pain in humans, these patients present a pro-inflammatory cytokine profile and it is a reasonable hypothesis that these cells may contribute to this inflammatory response. Modulating microglial functions offers a novel therapeutic opportunity following nerve injury which ideally would involve reducing the pro-inflammatory nature of these cells whilst retaining their potential beneficial functions.
-
Experimental neurology · Apr 2012
ReviewEmerging role of microglial kinin B1 receptor in diabetic pain neuropathy.
Nowadays diabetes mellitus has reached epidemic level and is considered as the primary cause of foot amputation and pain neuropathy. The classical theories explaining the development of diabetic pain neuropathy include the imbalance of neuronal biochemical pathways (Polyol pathway, Na(+)/K(+) ATPase pump, AGE, ROS) and microangiopathy which promote nerve fibers depolarization, sensitization, ectopic discharges, demyelization and ultimately neuronal death. However, the current pharmacotherapy targeting those pathways brings variable, not always satisfactory and temporal relief in patients experiencing diabetic pain neuropathy. ⋯ A few selective B1R antagonists have been fully characterized in animal models although small molecules orally active are urgently needed for targeting human B1R on CNS microglia. Thus far, the pharmacological blockade of kinin B1R in various animal paradigms or its genetic deletion in B1R knock-out mice failed to cause unwanted side effects, making this approach feasible. This is consistent with the highly inducible feature of this atypical G-protein coupled receptor whose expression can be seen as the alarming signature of immune and inflammatory diseases, notably diabetes mellitus.
-
Experimental neurology · Apr 2012
ReviewMultiple mechanisms of microglia: a gatekeeper's contribution to pain states.
Microglia are gatekeepers in the CNS for a wide range of pathological stimuli and they blow the whistle when things go wrong. Collectively, microglia form a CNS tissue alarm system (Kreutzberg's "sensor of pathology"), and their involvement in physiological pain is in line with this function. ⋯ Such abnormal microglial behavior seems likely due to an as yet ill-understood disturbance of microglial functions unrelated to inflammation. The idea that microglia have roles in the CNS that differ from those of peripheral macrophages has gained momentum with the discovery of their separate, pre-hematopoietic lineage during embryonic development and their direct interactions with synapses.
-
Experimental neurology · Apr 2012
ReviewPropentofylline, a CNS glial modulator does not decrease pain in post-herpetic neuralgia patients: in vitro evidence for differential responses in human and rodent microglia and macrophages.
There is a growing body of preclinical evidence for the potential involvement of glial cells in neuropathic pain conditions. Several glial-targeted agents are in development for the treatment of pain conditions. Here we report the failure of a glial modulating agent, propentofylline, to decrease pain reported in association with post-herpetic neuralgia. ⋯ Overall, human microglia were less responsive to LPS stimulation and propentofylline treatment than the other cell types. Our data demonstrate significant functional differences between cell types and species following propentofylline treatment and LPS stimulation. These results may help explain the differential behavioral effects of propentofylline observed between rodent models of pain and the human clinical trial.