Experimental neurology
-
Experimental neurology · Sep 2009
Focal nerve inflammation induces neuronal signs consistent with symptoms of early complex regional pain syndromes.
Early forms of complex regional pain syndromes (CRPS) are characterized by severe pain and autonomic dysfunction in a limb, both of which seem out of proportion to the inciting event. While often caused by obvious nerve injury, the syndromes also occur following relatively trivial trauma. Persistent inflammation has been implicated in the etiology of CRPS. ⋯ Additionally, none of the sympathetic axons in any group were mechanically sensitive. These findings support that focal nerve inflammation is sufficient to cause neuronal discharge changes that are consistent with clinical findings in early CRPS. Furthermore, the lack of axonal mechanical sensitivity in sympathetic axons rules out channels expressed in these neurons as possible mechano-electrical transducers.
-
Experimental neurology · Sep 2009
Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury.
Although injured peripheral axons are able to regenerate, functional recovery is usually poor after nerve transection. In this study we aim to elucidate the role of neuronal activity, induced by nerve electrical stimulation and by exercise, in promoting axonal regeneration and modulating plasticity in the spinal cord after nerve injury. Four groups of adult rats were subjected to sciatic nerve transection and suture repair. ⋯ Groups that received acute ES and/or were forced to exercise in the treadmill showed higher levels of muscle reinnervation and increased numbers of regenerated myelinated axons when compared to control animals or animals that received chronic ES. Combining ESa with treadmill training significantly improved muscle reinnervation during the initial phase. The facilitation of the monosynaptic H reflex in the injured limb was reduced in all treated groups, suggesting that the maintenance of activity helps to prevent the development of hyperreflexia.
-
Experimental neurology · Sep 2009
Editorial Historical ArticleStimulating the brain to treat depression.
-
Experimental neurology · Sep 2009
A polysialic acid mimetic peptide promotes functional recovery in a mouse model of spinal cord injury.
Contrary to lower species that recapitulate some of the developmental programs, in mammals, functional recovery after spinal cord injury is impaired by a non-permissive environment and the lack of plasticity of adult neurons. The developmental plasticity associated linear homopolymer of alpha 2,8-linked sialic acid (PolySialic Acid, PSA), represents a permissive determinant that could contribute to recovery. We previously showed that a PSA cyclic mimetic peptide (PR-21) displayed PSA-like biological functions (Torregrossa, P., Buhl, L., Bancila, M., Durbec, P., Schafer, C., Schachner, M., Rougon, G., 2004. ⋯ At the cellular level, PR-21 increased serotonergic axon density at and caudal to the lesion site, and decreased reactive gliosis in vivo. In an in vitro model of reactive astrocytes, PR-21 increased NCAM expression in strongly GFAP positive cells. Our data point to the unique features of a carbohydrate mimicking peptide, and support the notion that PSA can be considered as an important factor in recovery from spinal cord injury.
-
Experimental neurology · Aug 2009
ReviewThe Alzheimer's disease mitochondrial cascade hypothesis: an update.
In 2004 we proposed the mitochondrial cascade hypothesis of sporadic Alzheimer's disease (AD). Our hypothesis assumed sporadic and autosomal dominant AD are not etiologically homogeneous, considered evidence that AD pathology is not brain-limited, and incorporated aging theory. ⋯ We now review the reasoning used to formulate the hypothesis, discuss pertinent interim data, and update its tenants. Readers are invited to consider the conceptual strengths and weaknesses of this hypothesis.