Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis
-
Clin. Appl. Thromb. Hemost. · Jan 2020
Microparticles and Nucleosomes Are Released From Parenchymal Cells Destroyed After Injury in a Rat Model of Blunt Trauma.
We investigated the relationships between circulating procoagulants and trauma severity, including cellular destruction, and the effects of thrombin generation on procoagulants in a rat blunt trauma model. The rats were subjected to tumbling blunt trauma, where they were tumbled for 0, 250, 500, or 1000 revolutions. Creatine kinase, nucleosome, and microparticle plasma levels increased gradually with trauma severity. ⋯ Procoagulants, such as microparticles and nucleosomes, are released from destroyed parenchymal cells immediately after external traumatic force, activating the coagulation cascade. The procoagulants shorten the time to initiation of thrombin generation. Furthermore, although coagulation factors are consumed, the thrombin generation ratio increases.
-
Clin. Appl. Thromb. Hemost. · Jan 2019
Reversal of Factor Xa Inhibitors by Andexanet Alfa May Increase Thrombogenesis Compared to Pretreatment Values.
Recombinant coagulation factor Xa (FXa), inactivated Zh-zo, also known as andexanet alfa (AA), is a modified version of human FXa that has been developed to neutralize FXa inhibitors. We studied the reversal effect of AA for these inhibitors in various anticoagulant and thrombin generation (TG) assays. Individual aliquots of normal human plasma containing 1 µg/mL of apixaban, betrixaban, edoxaban, and rivaroxaban, were supplemented with saline or AA at a concentration of 100 µg/mL. ⋯ Andexanet alfa added at 100 µg/mL to various FXa supplemented systems resulted in reversal of the inhibitory effects, restoring the TG profile; AUC, LT, and peak thrombin levels were comparable to those of unsupplemented samples. Andexanet alfa is capable of reversing anti-Xa activity of different oral FXa inhibitors but overshoots thrombogenesis in both the saline and FXa inhibitor supplemented systems. The degree of neutralization of Xa inhibitor is specific to each agent.