Neurobiology of learning and memory
-
Neurobiol Learn Mem · Dec 2016
Changes in corticospinal excitability during consolidation predict acute exercise-induced off-line gains in procedural memory.
A single bout of cardiovascular exercise performed immediately after practicing a motor task improves the long-term retention of the skill through an optimization of memory consolidation. However, the specific brain mechanisms underlying the effects of acute cardiovascular exercise on procedural memory are poorly understood. We sought to determine if a single bout of exercise modifies corticospinal excitability (CSE) during the early stages of memory consolidation. ⋯ Exercise promoted an increase in CSE, which remained elevated 2h after exercise. More importantly, global increases in CSE following exercise correlated with the magnitude of off-line gains in skill level assessed in a retention test performed 8h after motor practice. A single bout of exercise modulates short-term neuroplasticity mechanisms subserving consolidation processes that predict off-line gains in procedural memory.
-
Neurobiol Learn Mem · Nov 2016
N-glycosylation in the hippocampus is required for the consolidation and reconsolidation of contextual fear memory.
Memory consolidation and reconsolidation have been shown to require new gene expression. N-glycosylation, one of the major post-translational modifications, is known to play essential or regulatory roles in protein function. A previous study suggested that N-glycosylation is required for the maintenance of long-term potentiation in hippocampal CA1 neurons. ⋯ Similarly, this pharmacological blockade of N-glycosylation in the dorsal hippocampus also disrupted post-reactivation LTM after retrieval without affecting post-reactivation STM. Additionally, a microinfusion of swainsonine blocked c-fos induction in the hippocampus, which is observed when memory is consolidated. Our observations showed that N-glycosylation is required for the consolidation and reconsolidation of contextual fear memory and suggested that N-glycosylation contributes to the new gene expression necessary for these memory processes.
-
Neurobiol Learn Mem · Oct 2016
Repetitive transcranial magnetic stimulation effectively facilitates spatial cognition and synaptic plasticity associated with increasing the levels of BDNF and synaptic proteins in Wistar rats.
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique, by which cognitive deficits can be alleviated. Furthermore, rTMS may facilitate learning and memory. However, its underlying mechanism is still little known. ⋯ Furthermore, LTP and DEP as well as PPF were effectively facilitated by 5Hz-rTMS. Additionally, the expressions of BDNF, SYP and NR2B were significantly increased via magnetic stimulation. The results suggest that rTMS considerably increases the expressions of BDNF, postsynaptic protein NR2B and presynaptic protein SYP, and thereby significantly enhances the synaptic plasticity and spatial cognition in normal animals.
-
Neurobiol Learn Mem · Jul 2016
Working memory performance is related to intrinsic resting state functional connectivity changes in community-dwelling elderly cohort.
Characterization of normal age-related changes in resting state brain networks associated with working memory performance is a major prerequisite for studying neurodegenerative diseases. The aim of this study was to investigate the relationship between performing a working memory task (under MRI) and resting-state brain networks in a large cohort of healthy elderly subjects (n=337). Functional connectivity and interactions between networks were assessed within the default mode (DMN), salience (SN), and right and left central executive (CEN) networks in two groups of subjects classed by their performance (low and high). ⋯ The higher functional connectivity within the CEN could be related to compensatory mechanisms, without which the subjects would have even lower performances. The correlation between the DMN and CEN suggests a modulation between the lower functional connectivity within the DMN and the higher functional connectivity within the CEN when performance is reduced. Finally, this study suggests that performance modifications in healthy elderly subjects are associated with reorganization of functional connectivity within the DMN, SN, and CEN.
-
Neurobiol Learn Mem · May 2016
Exercise prevents high-fat diet-induced impairment of flexible memory expression in the water maze and modulates adult hippocampal neurogenesis in mice.
Obesity is currently one of the most serious threats to human health in the western civilization. A growing body of evidence suggests that obesity is associated with cognitive dysfunction. Physical exercise not only improves fitness but it has also been shown in human and animal studies to increase hippocampus-dependent learning and memory. ⋯ Short-term exercise of 14days in the therapeutic group was not effective in improving spatial learning or memory. We show that (1) alterations in learning and flexible memory expression are accompanied by changes in the number of neuronal cells at different maturation stages; (2) these neuronal cells are in turn differently affected by HFD; (3) adolescent mice are specifically susceptible to the negative effects of HFD. Thus, physical exercise, by modulating adult neurogenesis in the hippocampus, might represent a potential preventive approach for treating cognitive impairments associated with adolescent obesity.