Neurobiology of learning and memory
-
Neurobiol Learn Mem · Mar 2016
Dentate gyrus supports slope recognition memory, shades of grey-context pattern separation and recognition memory, and CA3 supports pattern completion for object memory.
In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. ⋯ In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats displayed a significant interaction between the two groups and the number of available objects suggesting impairment in a pattern completion function for object cues.
-
Neurobiol Learn Mem · Feb 2016
Role of hippocampal and prefrontal cortical signaling pathways in dextromethorphan effect on morphine-induced memory impairment in rats.
Evidence suggests that dextromethorphan (DM), an NMDA receptor antagonist, induces memory impairment. Considering that DM is widely used in cough-treating medications, and the co-abuse of DM with morphine has recently been reported, the aims of the present study was (1) to investigate whether there is a functional interaction between morphine and DM in passive avoidance learning and (2) to assess the possible role of the hippocampal and prefrontal cortical (PFC) signaling pathways in the effects of the drugs on memory formation. Our findings indicated that post-training or pre-test administration of morphine (2 and 6 mg/kg) or DM (10-30 mg/kg) impaired memory consolidation and retrieval which was associated with the attenuation of the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (p-CAMKII) and cAMP responsive element-binding protein (p-CREB) in the targeted sites. ⋯ It can be concluded that there is a relationship between the hippocampus and the PFC in the effect of DM and/or morphine on memory retrieval. Moreover, a cross SDL can be induced between the co-administration of DM and morphine. Interestingly, CAMKII-CREB signaling pathways also mediate the drugs-induced SDL.
-
Neurobiol Learn Mem · Jan 2016
The effects of sleep, wake activity and time-on-task on offline motor sequence learning.
While intervening sleep promotes the consolidation of memory, it is well established that cognitive interference from competing stimuli can impede memory retention. The current study examined changes in motor skill learning across periods of wakefulness with and without competing stimuli, and periods of sleep with and without disruption from external stimuli. A napping study design was adopted where participants (N=44) either had (1) a 30min nap composed of Non-Rapid Eye Movement (NREM) sleep, (2) 30min NREM nap fragmented by audio tone induced arousals, (3) 45min of quiet wakefulness, or (4) 45min of active wakefulness. ⋯ Following the long delay with the intervening nap/wake condition, there were no further offline gains or losses in performance in any sleep (uninterrupted/fragmented) or wake (quiet/active) condition. The current findings suggest that after controlling for offline gains in performance that occur after a brief rest and likely to due to the dissipation of fatigue, the subsequent effect of an intervening sleep or wake period on motor skill consolidation is not significant. Consistent with this null result, the impact of disrupting the sleep episode or manipulating activity during intervening wake also appears to be negligible.
-
Neurobiol Learn Mem · Sep 2015
Long-lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of HCN1/HCN2 expression in hippocampal CA1 region.
Chronic cerebral hypoperfusion (CCH) causes learning and memory impairments and increases the risk of Alzheimer disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the mechanisms underlying the disease process remained unclear particularly in a temporal manner. We performed permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are altered at different stages of cognitive impairment caused by CCH, adult male SD rats were randomly distributed into sham-operated 4, 8 and 12weeks group, 2VO 4, 8 and 12weeks group. ⋯ However, HCN2 surface expression in CA1 increased throughout the ischemia time-scales (4, 8 and 12w). Our findings indicate spatial learning and memory deficits in the CCH model are associated with disturbed HCN1 and HCN2 surface expression in hippocampal CA1. The altered patterns of both HCN1 and HCN2 surface expression may be implicated in the early stage (4w) of spatial learning and memory impairments; and the stable and long-lasting impairments of spatial learning and memory may partially attribute to the up-regulated HCN2 surface expression.
-
Neurobiol Learn Mem · Sep 2015
Exposure to extinction-associated contextual tone during slow-wave sleep and wakefulness differentially modulates fear expression.
Recent research has used context cues (odor or auditory cues) to target memories during sleep and has demonstrated that they can enhance declarative and procedural memories. However, the effects of external cues re-presented during sleep on emotional memory are still not fully understood. In the present study, we conducted a Pavlovian fear conditioning/extinction paradigm and examined the effects of re-exposure to extinction memory associated contextual tones during slow-wave sleep (SWS) and wakefulness on fear expression. ⋯ During the recall test, the fear responses were significantly higher in the SWS-Tone group than that in the SWS-No Tone group or the SWS-CtrT group, while the Wake-Tone group exhibited more attenuated fear responses than either the Wake-No Tone group or Wake-CtrT group. Otherwise, re-exposure to auditory tones during SWS did not affect sleep profiles. These results suggest that distinct conditions during which re-exposure to an extinction memory associated contextual cue contributes to differential effects on fear expression.