Investigative radiology
-
Investigative radiology · Sep 2009
Comparative StudyAnalysis of prostate DCE-MRI: comparison of fast exchange limit and fast exchange regimen pharmacokinetic models in the discrimination of malignant from normal tissue.
The ability to detect and identify malignant lesions within the prostate with conventional T2-weighted imaging is still limited. Although lesion conspicuity is improved with dynamic contrast-enhanced imaging there still remains some ambiguity as all tissues within the prostate may enhance. The aim of the current study was to take advantage of the improved signal-to-noise ratio at 3 T and assess the ability of 2 alternative pharmacokinetic models to clearly identify malignant areas within the prostate. We also aspire to assess the impact of tissue heterogeneity on variation in estimated pharmacokinetic parameters. ⋯ Accounting for a finite water exchange rate between cells and their environment improves the discrimination of malignant from benign tissues within the prostate and may aid staging accuracy and ability to monitor response to treatment.
-
Investigative radiology · Sep 2009
Peripheral magnetic resonance angiography with continuous table movement in combination with high spatial and temporal resolution time-resolved MRA With a total single dose (0.1 mmol/kg) of gadobutrol at 3.0 T.
To prove the concept of peripheral continuous table movement (CTM) MR-angiography (MRA) in combination with high spatial and temporal resolution time-resolved TWIST-MRA in a single MR-examination at 3.0 T with a single dose (0.1 mmol/kg) of gadobutrol in total. ⋯ Single-dose gadobutrol CTM-MRA in combination with a high spatial and temporal resolution TWIST-MRA at 3.0 T is a reliable technique with good image quality. Despite the use of single dose contrast agent large field of view coverage and dynamic images can be acquired. Because of its robustness, this imaging approach of the vasculature has great potential for a broad clinical use.
-
Investigative radiology · Sep 2009
Three-dimensional T2-weighted MRI of the human femoral arterial vessel wall at 3.0 Tesla.
To evaluate the potential use of a novel 3D turbo spin-echo (TSE) T2-weighted (T2w) technique for assessing the vessel wall in the superficial femoral artery at 3.0 T. ⋯ We established the feasibility of using the 3D SPACE technique for vessel wall imaging in the superficial femoral artery at 3.0T. High, isotropic-resolution SPACE images, with the aid of multiplanar reformation, enable superior vessel wall visualization. Superior blood signal suppression comparable to vessel wall morphologic measurements, and superior time efficiency compared to conventional 2D TSE imaging indicate the great potential of the SPACE method as a noninvasive imaging technique for the assessment of atherosclerotic plaque burden in PAD patients.
-
Investigative radiology · Sep 2009
Comparative StudyFeasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope.
To circumvent the challenges of conventional electrocardiographic (ECG)-gating by examining the efficacy of an MR stethoscope, which offers (i) no risk of high voltage induction or patient burns, (ii) immunity to electromagnetic interference, (iii) suitability for all magnetic field strengths, and (iv) patient comfort together with ease of use for the pursuit of reliable and safe (ultra)high field cardiac gated magnetic resonance imaging (MRI). ⋯ The proposed MR-stethoscope presents a promising alternative to currently available techniques for cardiac gating of (ultra)high field MRI. Its intrinsic insensitivity to interference from electromagnetic fields renders it suitable for clinical imaging because of its excellent trigger reliability, even at 7.0 Tesla.
-
Investigative radiology · Sep 2009
Controlled Clinical TrialT1(Gd) gives comparable information as Delta T1 relaxation rate in dGEMRIC evaluation of cartilage repair tissue.
To evaluate the relationship between T1 after intravenous contrast administration (T1Gd) and Delta relaxation rate (DeltaR1) = (1/T1(Gd) - 1/T1o) in the delayed Gadolinium-Enhanced MRI of cartilage (dGEMRIC) evaluation of cartilage repair tissue. ⋯ The high correlation between T1 (Gd) and DeltaR1 and the comparable conclusions reached utilizing metric implies that T1 mapping before intravenous administration of MR contrast agent is not necessary for the evaluation of repair tissue. This will help to reduce costs, inconvenience for the patients, simplifies the examination procedure, and makes dGEMRIC more attractive for follow-up of patients after cartilage repair surgeries.