Science and engineering ethics
-
The publish-or-perish paradigm is a prevailing facet of science. We apply game theory to show that, under rather weak assumptions, this publication scenario takes the form of a prisoner's dilemma, which constitutes a substantial obstacle to beneficial delayed publication of more complete results. ⋯ We describe institutional rules that could additionally favour high-quality work and publications and provide examples of such policies that are already in place. Our analysis should be extended to other publication scenarios and the role of other stakeholders such as scientific journals or sponsors.
-
In 2009, Scott S. Reuben was convicted of fabricating data, which lead to 25 of his publications being retracted. Although it is clear that the perpetuation of retracted articles negatively effects the appraisal of evidence, the extent to which retracted literature is cited had not previously been investigated. ⋯ Annual citations decreased from 108 in 2009 to 18 in 2014; however, the percentage of publications correctly indicating the retraction status also declined. The percentage of citations in top-25 %-journals, as well as the percentage of citations in journals from Reuben's research area, declined sharply after 2009. Our data show that even 5 years after their retraction, nearly half of Reuben's articles are still being quoted and the retraction status is correctly mentioned in only one quarter of the citations.
-
Gain-of-function (GOF) research involves experimentation that aims or is expected to (and/or, perhaps, actually does) increase the transmissibility and/or virulence of pathogens. Such research, when conducted by responsible scientists, usually aims to improve understanding of disease causing agents, their interaction with human hosts, and/or their potential to cause pandemics. The ultimate objective of such research is to better inform public health and preparedness efforts and/or development of medical countermeasures. ⋯ The ethical and decision-making framework ultimately developed is based on the idea that there are numerous ethically relevant dimensions upon which any given case of GOFR can fare better or worse (as opposed to there being necessary conditions that are either satisfied or not satisfied, where all must be satisfied in order for a given case of GOFR to be considered ethically acceptable): research imperative, proportionality, minimization of risks, manageability of risks, justice, good governance (i.e., democracy), evidence, and international outlook and engagement. Rather than drawing a sharp bright line between GOFR studies that are ethically acceptable and those that are ethically unacceptable, this framework is designed to indicate where any given study would fall on an ethical spectrum-where imaginable cases of GOFR might range from those that are most ethically acceptable (perhaps even ethically praiseworthy or ethically obligatory), at one end of the spectrum, to those that are most ethically problematic or unacceptable (and thus should not be funded, or conducted), at the other. The aim should be that any GOFR pursued (and/or funded) should be as far as possible towards the former end of the spectrum.
-
The capacity to collect and analyse data is growing exponentially. Referred to as 'Big Data', this scientific, social and technological trend has helped create destabilising amounts of information, which can challenge accepted social and ethical norms. Big Data remains a fuzzy idea, emerging across social, scientific, and business contexts sometimes seemingly related only by the gigantic size of the datasets being considered. ⋯ Six additional areas of concern are then suggested which, although related have not yet attracted extensive debate in the existing literature. It is argued that they will require much closer scrutiny in the immediate future: (6) the dangers of ignoring group-level ethical harms; (7) the importance of epistemology in assessing the ethics of Big Data; (8) the changing nature of fiduciary relationships that become increasingly data saturated; (9) the need to distinguish between 'academic' and 'commercial' Big Data practices in terms of potential harm to data subjects; (10) future problems with ownership of intellectual property generated from analysis of aggregated datasets; and (11) the difficulty of providing meaningful access rights to individual data subjects that lack necessary resources. Considered together, these eleven themes provide a thorough critical framework to guide ethical assessment and governance of emerging Big Data practices.
-
Editing human germline genes may act as boon in some genetic and other disorders. Recent editing of the genome of the human embryo with the CRISPR/Cas9 editing tool generated a debate amongst top scientists of the world for the ethical considerations regarding its effect on the future generations. It needs to be seen as to what transformation human gene editing brings to humankind in the times to come.