Expert opinion on therapeutic patents
-
Expert Opin Ther Pat · Oct 2013
ReviewNovel small molecule epithelial sodium channel inhibitors as potential therapeutics in cystic fibrosis - a patent evaluation.
Novel molecular platforms for epithelial sodium channel (ENaC) modulators are claimed in the following six patents: WO2012035158(A1); WO2009074575(A2); WO2011028740(A1); WO2009150137(A2); WO2011079087(A1); WO2008135557(A1). These ENaC inhibitors may be used in blocking transepithelial sodium and consequently water absorption across airway epithelia. This may result in airway rehydration and enhanced mucociliary clearance in patients with cystic fibrosis (CF) lung disease. ⋯ Most of the claims and patent data are supported by the currently available literature. The patents deliver a solid chemical basis for a variety of chemical modifications of the ENaC inhibitor amiloride. These modifications may result in the development of a novel, applicable ENaC inhibitors which may have lasting effects on diseased airways and may achieve airway rehydration and enhanced mucociliary clearance in CF lung disease.
-
Expert Opin Ther Pat · Sep 2013
ReviewNon-peptidic δ opioid receptor agonists and antagonists (2000 - 2012).
The δ opioid receptor mediates various pharmacological effects such as antinociceptive and antidepressant effects, whereas it does not appear to induce μ opioid-like side effects such as dependence, respiratory depression and constipation. Therefore, the δ opioid receptor is a promising drug target. ⋯ Potential therapeutic effects by δ receptor agonists are antinociceptive, antidepressant, anxiolytic, cardioprotective and neuroprotective effects. Among them, anxiolytic effects are of particular interest because the anxiolytic effects by a δ receptor agonist have been observed in humans. Although non-peptidic δ receptor agonists were reported to show convulsive effects via the δ opioid receptor, some δ receptor agonists are known to produce no convulsive behaviors. Therefore, it may be possible to eliminate convulsion induced by a δ receptor agonist. Many δ receptor antagonists were also reported but there is little new information about pharmacological effects by a δ receptor antagonist. Although detailed results were not revealed, two δ receptor antagonists with μ receptor agonistic or antagonistic properties are in the late stages of the clinical trial.
-
Expert Opin Ther Pat · Aug 2013
EditorialStrategic considerations under the Biologics Price Competition and Innovation Act.
The Biologics Price Competition and Innovation Act provides a pathway for regulatory approval of generic drugs and the associated patent challenge. This article reviews strategic considerations during the patent litigation and injunction phases. Considerations during the initial patent litigation phase include when and whether to exchange a paragraph k application and the listing and exchange of patent information during the volley phase.
-
Expert Opin Ther Pat · Apr 2013
ReviewInhibitors of JAK2 and JAK3: an update on the patent literature 2010 - 2012.
Janus kinases (JAKs) comprise a family of four enzymes, JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2), centrally implicated in cell signaling processes important in cancer and immune-inflammatory diseases. Progression in the field has taken a recent step forward with the approval of ruxolitinib (Jakafi), a selective inhibitor of JAK1/2 and very recently tofacitinib (Xeljanz), a pan-JAK inhibitor. There are many new JAK family enzyme inhibitors in the clinic now with a range of selectivity profiles. More selective JAK2 or JAK3 compounds are now coming through in considerable numbers and this review attempts to provide an update of the recent patent literature of those new compounds. An overview is given on the diversity of core structures employed for inhibitor design showing that the vast majority of compounds are based on classic ATP-competitive kinase inhibitor heterocycles. ⋯ JAK inhibitor therapy is entering a significant new era with the advent on the market of the JAK1/2 inhibitor ruxolitinib and the pan-JAK inhibitor tofacitinib, with unprecedented speed of development. Selectivity against the four individual JAK family enzymes, JAK1, 2, 3 and TYK2, is now a key goal since they each play subtly different roles in cytokine-induced cell signaling. The future looks bright for patients as many new drugs are being developed and now combinations of JAK inhibitors with other targeted agents are being studied in the clinic. These advances are expected to lead to further significant progress improving patient outcomes and quality of life.
-
Expert Opin Ther Pat · Nov 2012
ReviewApproaches to Ras signaling modulation and treatment of Ras-dependent disorders: a patent review (2007--present).
Ras proteins are small GTPases molecular switches that cycle through two alternative conformational states, a GDP-bound inactive state and a GTP-bound active state. In the active state, Ras proteins interact with and modulate the activity of several downstream effectors regulating key cellular processes including proliferation, differentiation, survival, senescence, migration and metabolism. Activating mutations of RAS genes and of genes encoding Ras signaling members have a great incidence in proliferative disorders, such as cancer, immune and inflammatory diseases and developmental syndromes. Therefore, Ras and Ras signaling represent important clinical targets for the design and development of pharmaceutically active agents, including anticancer agents. ⋯ Targeted therapy approach based on direct targeting of molecules specifically altered in Ras-dependent diseases is pursued with molecules that down-regulate expression or inhibit the biological function of mutant Ras or Ras signaling members. The low success rate in a clinical setting of molecules targeting activated members of the Ras pathway may require development of novel approaches, including combined and synthetic lethal therapies.