Current pharmaceutical design
-
Accumulating evidence has indicated that formation and accumulation of advanced glycation end products (AGEs) progress under diabetic conditions, thereby contributing to the development and progression of various diabetes- and aging-related disorders, such as diabetic nephropathy, diabetic retinopathy, atherosclerotic cardiovascular disease, insulin resistance, cancer growth and metastasis, osteoporosis, and Alzheimer's disease. Modification of proteins, lipids and nucleic acids by AGEs alter their structural integrity and function, and evoke oxidative stress generation and inflammatory reactions through the interaction with a receptor for AGEs (RAGE), being involved in the above-mentioned devastating disorders. ⋯ Since aptamers can be easily generated and highly penetrated into various organs with a low risk of allergic reactions, they may be superior to antibodies for neutralizing and/or blocking target proteins or cell surface receptors. Therefore, in this review, we describe the therapeutic potential of DNA-aptamers raised against the AGE-RAGE axis in diabetes-associated complications, especially focusing on vascular complications of diabetes and cancer.
-
Postoperative Pulmonary Complications (PPCs) can contribute to increased mortality and prolonged hospital stay in surgical patients with Gastric Cancer (GC). This study aimed to investigate potential risk factors for PPCs in elderly GC patients following elective laparoscopic gastrectomy. ⋯ Preoperative albumin level was an independent risk factor for PPCs in elderly GC patients after elective laparoscopic gastrectomy.
-
Pituitary adenylate Cyclase-Activating Polypeptide (PACAP) is a neuroprotective peptide that has been shown to exert protective effects in different models of neurodegenerative diseases, including retinal degenerations. Data obtained from PACAP-deficient (PACAP KO) mice provide evidence that endogenous PACAP has a neuroprotective role in different pathologies. PACAP KO mice show enhanced sensitivity to different insults, such as oxidative stress, hypoxia and inflammation. The aim of the present study was to investigate the protective effects of endogenous PACAP in retinal inflammation. ⋯ Our results showed that endogenous PACAP has a protective role in LPS-caused retinal inflammation.