Current pharmaceutical design
-
An increasing number of patients receive anticoagulant therapy to prevent and treat arterial or venous thromboembolism. The major complication of anticoagulant therapy is the increase of the individual bleeding risk. All anticoagulant drugs can cause haemorrhages, that can sometimes be life-threatening. ⋯ More recently, new anticoagulant drugs, both parenteral and oral, have been approved for clinical use. Currently, none of these new agents has a specific antidote, and little advise can be given on how to manage a major bleeding event. The aim of this article is to describe the haemorrhagic risk and the management of bleeding complications associated with the principal anticoagulant drugs.
-
Accumulating evidence indicates that circulating endothelial progenitor cells (EPCs) derived from bone marrow contribute to reendothelialization of injuried vessels as well as neo-vascularization of ischemic lesions in either a direct or an indirect way. Moreover, the number and/or the functional activity of EPCs are inversely correlated with risk factors for cardiovascular disease. ⋯ In particular, we show the recent observation on the effects of active and second hand smoke (SHS) exposure on EPC number and functional activity. This review also considers the effects of nicotine and other smoke compounds on EPC number and activity, in in vitro and in vivo models.
-
Chemokines and chemokine receptors play diverse roles in homeostasis. The chemokine stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 have critical functions in the immune, circulatory, and central nervous systems and have also been implicated in tumor biology and metastasis. Here we review the current data regarding the role of the CXCR4/SDF-1 chemokine axis in the development of bone metastases, derived from tumor models of breast or prostate cancers. ⋯ In short, the effects of the CXCR4/SDF-1 axis on tumor cell growth within the bone are not yet fully defined. Further, there are theoretical risks that blockade of this chemokine axis could impair immune function or mobilize tumor cells leading to other sites of metastasis. As such, caution should be taken when designing therapeutic strategies targeting this chemokine axis.
-
Active and passive exposure to cigarette smoke (CS) increases the risk of, and has deleterious effects in, ischaemic heart disease. Exposure to CS increases infarct size in experimental models of coronary occlusion and reperfusion. ⋯ Many, if not all, of these alterations are caused by oxidative stress, either as a direct consequence of inhalation of free radicals, or by induction from the vast range of chemicals present in both the gas and solid phase of tobacco smoke. Here, some of the proposed mechanisms will be reviewed and their impact on the cardiomyocytes and peripheral vasculature discussed.
-
Alzheimer's disease (AD) is the most common neurodegenerative disorder that affects the elderly. The increase of life-expectancy is transforming AD into a major health-care problem. AD is characterized by a progressive impairment of memory and other cognitive skills leading to dementia. ⋯ This review discusses current knowledge about the involvement of neuroinflammation in AD pathogenesis, focusing on phenotypic and functional responses of microglia, astrocytes and neurons in this process. The abnormal production by glia cells of pro-inflammatory cytokines, chemokines and the complement system, as well as reactive oxygen and nitrogen species, can disrupt nerve terminals activity causing dysfunction and loss of synapses, which correlates with memory decline; these are phenomena preceding the neuronal death associated with late stages of AD. Thus, therapeutic strategies directed at controlling the activation of microglia and astrocytes and the excessive production of pro-inflammatory and pro-oxidant factors may be valuable to control neurodegeneration in dementia.