Current pharmaceutical design
-
The mechanisms of action of anesthetics are unclear. Much attention has been focused on ion channels in the central nervous system as targets for anesthetics. During the last decade, major advances have been made in our understanding of the physiology and pharmacology of G-protein-coupled receptor (GPCR) signaling. ⋯ However, an estimated 500-800 additional GPCRs have been classified as "orphan" receptors (oGPCRs) because their endogenous ligands have not yet been identified. Given that known GPCRs are targets for anesthetics, these oGPCRs represent a rich group of receptor targets for anesthetics. This article highlights the effects of anesthetics on Gq-coupled receptors, and discusses whether GPCRs other than Gq-coupled receptors are targets for anesthetics.
-
Human ether-a-go-go-related gene (hERG) potassium channels conduct the rapid component of the delayed rectifier potassium current, IKr, which is crucial for repolarization of cardiac action potentials. Moderate hERG blockade may produce a beneficial class III antiarrhythmic effect. In contrast, a reduction in hERG currents due to either genetic defects or adverse drug effects can lead to hereditary or acquired long QT syndromes characterized by action potential prolongation, lengthening of the QT interval on the surface ECG, and an increased risk for "torsade de pointes" arrhythmias and sudden death. ⋯ Recently, mutations in hERG have been shown to cause current increase and hereditary short QT syndrome with a high risk for life-threatening arrhythmias. Finally, the discovery of adrenergic mechanisms of hERG channel regulation as well as the development of strategies to enhance hERG currents and to modify intracellular hERG protein processing may provide novel antiarrhythmic options in repolarization disorders. In conclusion, the increasing understanding of hERG channel function and molecular mechanisms of hERG current regulation could improve prevention and treatment of hERG-associated cardiac repolarization disorders.
-
Tobacco use is the leading risk factor for lung cancer, yet in addition to smoking habit, diet may also play a role in the disease's appearance. While there are reports to indicate that antioxidant vitamins and carotenoids may decrease the risk of lung cancer, results to date have been somewhat ambiguous. This review aimed to describe the results yielded by different studies, which have addressed antioxidant vitamin intake and lung cancer, and to indicate the mechanisms whereby these nutrients might be exercising their activity. ⋯ Insofar as provitamin A carotenoids were concerned, lutein/zeaxanthin, lycopene and alpha-carotene displayed a certain protective trend, yet beta-carotene exhibited no protective effect whatsoever; and indeed, there was speculation as to whether it might even be pernicious in smokers. Beta-criptoxanthin, on the other hand, showed a more consistent protective effect. The study highlighted the need to conduct further research on smokers and non-smokers alike, and in particular, to investigate the effect, if any, on lung cancer of carotenoids or vitamins when ingested in differing dosages.
-
Levosimendan is a new calcium sensitizer developed for the treatment of congestive heart failure. Experimental studies indicate that levosimendan increases myocardial contractility and dilates both the peripheral and coronary vessels. Its positive inotropic effect is based on calcium-dependent binding of the drug to cardiac troponin C. ⋯ The most common adverse events associated with levosimendan treatment are headache and hypotension, as a likely consequence of the vasodilating properties of the compound. In conclusion, levosimendan offers a new effective option for the treatment of acutely decompensated heart failure. Unlike traditional inotropes, levosimendan seems also to be safe in terms of morbidity and mortality.
-
Spinal cord injuries (SCI) result in a devastating loss of function below the level of the lesion in which there are variable motor recoveries and, in the majority of cases, central neuropathic pain syndromes (CNP) develop several months to years following injury. Unfortunately, the study of chronic pain after SCI has been neglected in the past due in part to the lack of good animal models but largely due to the clinically held dogma that CNP is not a real phenomenon and is psychogenic in nature rather than based on described pathophysiological mechanisms. The purpose of this article is to offer standardized terminology of pain, insight into animal modeling issues of CNP, descriptions of current clinical therapies and to discuss the pathophysiological mechanisms that provide the substrate for CNP that will lead to innovative new therapies. It is hoped that this information will give insight for research strategies as well as better care not only of SCI individuals, but is generalizable to many other CNP syndromes.