Current pharmaceutical design
-
Tuberculosis (TB) is a growing international health concern, since it is the leading infectious cause of death in the world today. In particular, the increasing prevalence of multidrug-resistant (MDR)-TB has greatly contributed to the increased difficulties in the control of TB. Because of the global health problems of TB, the increasing rate of MDR-TB and the high rate of a co-infection with HIV, the development of potent new anti-TB drugs without cross-resistance with known antimycobacterial agents is urgently needed. ⋯ In addition, the future development of new antitubercular drugs is briefly discussed according to the potential pharmacological targets. New critical information on the whole genome of Mycobacterium tuberculosis (MTB) was recently elucidated and increasing knowledge on various mycobacterial virulence genes will promote the progression in the identification of genes that code for new drug targets. Using such findings on MTB genome, drug development using quantitative structure-activity relationship may be possible in the near future.
-
Asthma treatment guidelines advocate the use of long-acting beta2-agonists (LABA) in addition to inhaled corticosteroids (ICS) in patients whose asthma is uncontrolled by ICS alone, thereby addressing two processes fundamental to asthma: bronchoconstriction and inflammation. Superior control--including a reduction in severe exacerbations--of asthma and COPD by ICS/LABA combination therapy has been demonstrated. Results from clinical studies suggest additive and potentially synergistic effects when the two agents are used in combination. ⋯ An ICS/LABA combination in a single inhaler represent safe, effective and convenient treatment options for the management of patients with asthma and COPD. Clinical results also suggest that adjustable dosing with budesonide/formoterol provides better asthma control than fixed dosing. Further elucidation of the underlying mechanisms responsible for this superior disease control is needed.
-
The mechanisms of action of anesthetics are unclear. Much attention has been focused on ion channels in the central nervous system as targets for anesthetics. During the last decade, major advances have been made in our understanding of the physiology and pharmacology of G-protein-coupled receptor (GPCR) signaling. ⋯ However, an estimated 500-800 additional GPCRs have been classified as "orphan" receptors (oGPCRs) because their endogenous ligands have not yet been identified. Given that known GPCRs are targets for anesthetics, these oGPCRs represent a rich group of receptor targets for anesthetics. This article highlights the effects of anesthetics on Gq-coupled receptors, and discusses whether GPCRs other than Gq-coupled receptors are targets for anesthetics.
-
Levosimendan is a new calcium sensitizer developed for the treatment of congestive heart failure. Experimental studies indicate that levosimendan increases myocardial contractility and dilates both the peripheral and coronary vessels. Its positive inotropic effect is based on calcium-dependent binding of the drug to cardiac troponin C. ⋯ The most common adverse events associated with levosimendan treatment are headache and hypotension, as a likely consequence of the vasodilating properties of the compound. In conclusion, levosimendan offers a new effective option for the treatment of acutely decompensated heart failure. Unlike traditional inotropes, levosimendan seems also to be safe in terms of morbidity and mortality.
-
NMDA (N-methyl-D-aspartate) receptors are one class of ionotropic receptor for the ubiquitous excitatory neurotransmitter L-glutamate. The receptor is made up of four protein subunits combined from a larger library of proteins, which gives this receptor a great deal of variability. This explains the large number of modulatory sites, a variety of sites at which antagonists can interact, and therefore a number of potential drug targets. ⋯ This review summarises the preclinical rationale, based on animal models, and the clinical evidence on the use of NMDA antagonists in pain states. It also summarises the details of the receptor so as to explain the rationale for targeting either specific sites on the receptor, or exploiting anatomical differences in subtype expression, so as to provide the beneficial effects of NMDA receptor block with an improved side effect profile. In particular, agents that are selective for receptors that include the NR2B subunit preclinically have a substantially better profile for treating neuropathic pain than do current NMDA antagonists; some emerging clinical evidence supports this view.