Molecular psychiatry
-
Molecular psychiatry · Oct 2016
Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression.
Depression is associated with alterations in corticostriatal reward circuitry. One pathophysiological pathway that may drive these changes is inflammation. Biomarkers of inflammation (for example, cytokines and C-reactive protein (CRP)) are reliably elevated in depressed patients. ⋯ Of note, mediation analyses revealed that these effects of CRP on connectivity mediated significant relationships between CRP and anhedonia and motor slowing. Finally, connectivity between striatum and vmPFC was associated with increased plasma interleukin (IL)-6, IL-1beta and IL-1 receptor antagonist (R=-0.33 to -0.36, P<0.05). These findings suggest that decreased corticostriatal connectivity may serve as a target for anti-inflammatory or pro-dopaminergic treatment strategies to improve motivational and motor deficits in patients with increased inflammation, including depression.
-
Subcortical structures, which include the basal ganglia and parts of the limbic system, have key roles in learning, motor control and emotion, but also contribute to higher-order executive functions. Prior studies have reported volumetric alterations in subcortical regions in schizophrenia. Reported results have sometimes been heterogeneous, and few large-scale investigations have been conducted. ⋯ Further, we revealed leftward asymmetry for thalamus, lateral ventricle, caudate and putamen volumes, and rightward asymmetry for amygdala and hippocampal volumes in both controls and patients with schizophrenia. Also, we demonstrated a schizophrenia-specific leftward asymmetry for pallidum volume. These findings suggest the possibility of aberrant laterality in neural pathways and connectivity patterns related to the pallidum in schizophrenia.
-
Molecular psychiatry · Sep 2016
Genome-wide association study identifies SESTD1 as a novel risk gene for lithium-responsive bipolar disorder.
Lithium is the mainstay prophylactic treatment for bipolar disorder (BD), but treatment response varies considerably across individuals. Patients who respond well to lithium treatment might represent a relatively homogeneous subtype of this genetically and phenotypically diverse disorder. Here, we performed genome-wide association studies (GWAS) to identify (i) specific genetic variations influencing lithium response and (ii) genetic variants associated with risk for lithium-responsive BD. ⋯ Phospholipids have been strongly implicated as lithium treatment targets. Furthermore, we estimated the proportion of variance for lithium-responsive BD explained by common variants ('SNP heritability') as 0.25 and 0.29 using two definitions of lithium response. Our results revealed a genetic variant in SESTD1 associated with risk for lithium-responsive BD, suggesting that the understanding of BD etiology could be furthered by focusing on this subtype of BD.
-
Molecular psychiatry · Sep 2016
Activation of a ventral hippocampus-medial prefrontal cortex pathway is both necessary and sufficient for an antidepressant response to ketamine.
A single sub-anesthetic dose of ketamine exerts rapid and sustained antidepressant effects. Here, we examined the role of the ventral hippocampus (vHipp)-medial prefrontal cortex (mPFC) pathway in ketamine's antidepressant response. Inactivation of the vHipp with lidocaine prevented the sustained, but not acute, antidepressant-like effect of ketamine as measured by the forced swim test (FST). ⋯ Furthermore, optogenetic inactivation of the vHipp/mPFC pathway at the time of FST completely reversed ketamine's antidepressant response. In addition, we found that a transient increase in TrkB receptor phosphorylation in the vHipp contributes to ketamine's sustained antidepressant response. These data demonstrate that activity in the vHipp-mPFC pathway is both necessary and sufficient for the antidepressant-like effect of ketamine.
-
Antidepressants have been shown to improve longevity in C. elegans. It is plausible that orthologs of genes involved in mood regulation and stress response are involved in such an effect. We sought to understand the underlying biology. ⋯ Drug repurposing bioinformatics analyses identified the relatively innocuous omega-3 fatty acid DHA (docosahexaenoic acid), piracetam, quercetin, vitamin D and resveratrol as potential longevity promoting compounds, along with a series of existing drugs, such as estrogen-like compounds, antidiabetics and sirolimus/rapamycin. Intriguingly, some of our top candidate genes for mood and stress-modulated longevity were changed in expression in opposite direction in previous studies in the Alzheimer disease. Additionally, a whole series of others were changed in expression in opposite direction in our previous studies on suicide, suggesting the possibility of a "life switch" actively controlled by mood and stress.