Brain research
-
Comparative Study
Dynamic processing of taste aversion extinction in the brain.
While substantial advances have been made in discovering how the brain learns and remembers, less is known about how the brain discards information, reorganizes information, or both. These topics are not only relevant to normal brain functioning but also speak to pathologies in which painful memories do not wane but are evoked time and again (e.g., post-traumatic stress disorder; PTSD). Here, we measured brain activity (as indicated by the regional expression of c-Fos protein) in rats during acquisition and throughout extinction of a conditioned taste aversion (CTA). ⋯ Finally, as almost full reacceptance of the taste is achieved, the gustatory neocortex (GNC) expresses enhanced levels of c-Fos protein. Thus, extinction of a CTA is not represented by a simple reversal of the c-Fos activity evoked by CTA conditioning. Rather, the data demonstrate that extinction of conditioned responses is a dynamic process in which the activity levels of particular nuclei along the brain's taste pathway change depending on the extent to which the conditioned response has been extinguished.
-
Comparative Study
Separate populations of neurons in the rostral ventromedial medulla project to the spinal cord and to the dorsolateral pons in the rat.
Activation of neurons in the rostral ventromedial medulla (RVM) directly modulates spinal nociceptive transmission by projections to the spinal cord dorsal horn and indirectly by projections to neurons in the dorsolateral pons (DLP) that project to the spinal cord dorsal horn. However, it is not known whether the same neurons in the RVM produce both direct and indirect modulation of nociception. Deposits of the retrograde tracers Fluoro-Gold (FG) in the spinal cord dorsal horn and DiI in the DLP were used to determine whether the same RVM neurons project to both of these regions. ⋯ In addition, spinally projecting RVM neurons were significantly larger than RVM neurons that project to the DLP. Finally, spinally projecting neurons were found predominantly on the midline and within the RVM; neurons that project to the DLP had a wider distribution and were present both within and outside of the RVM. Thus, separate and morphologically distinct populations of RVM neurons appear to modulate nociception by direct and indirect descending pathways.
-
Comparative Study Clinical Trial
The effects of muscle vibration on anticipatory postural adjustments.
The current study investigated the influence of changes in sensory information related to postural stability on anticipatory postural adjustments (APAs) in standing subjects. Subjects performed fast arm movements and a load release task while standing on a stable force platform or on an unstable board. We manipulated sensory information through vibration of the Achilles tendons and additional finger touch (contact forces under 1 N). ⋯ Small changes in the other index related to reciprocal activation (R-index) were found only in trunk muscles. Light touch and vibration induced opposing changes in the C-index, suggesting their opposite effects on the stabilization of a reference point or vertical. We conclude that the central nervous system deploys patterns of adjustments in which increased co-contraction of distal muscles and reciprocal adjustments in trunk muscles are modified to ensure equilibrium under postural instability.
-
Comparative Study
Intra-amygdalar injection of DAMGO: effects on c-Fos levels in brain sites associated with feeding behavior.
It is well known that the mu opioid agonist, Tyr-D-Ala-Gly-(me) Phe-Gly-ol (DAMGO), increases food intake in rats when injected into a variety of brain sites including the central nucleus of the amygdala (CeA). Immunohistochemical studies measuring c-Fos immunoreactivity (IR) suggest that the CeA contributes to opioid-related feeding. In the current study, we injected 2 nmol of DAMGO and measured food intake, c-Fos IR levels in various brain sites involved in feeding behavior, and mu opioid receptor internalization. ⋯ Administration of DAMGO into the CeA increased c-Fos IR levels in the shell of the nucleus accumbens (NAcc), but not in 17 other brain sites that were studied. We also found that intra-CeA injection of DAMGO, prior to LiCl injection, decreased c-Fos IR levels in the CeA compared to vehicle-injected rats. Thus, intra-CeA administration of DAMGO may increase feeding, in part, by activating neurons in the shell of the nucleus accumbens and by inhibiting activity of selected neurons in the CeA.
-
Comparative Study
Macrokinetic analysis of blockade of NMDA-gated currents by substituted alcohols, alkanes and ethers.
Volatile hydrocarbon based CNS depressants including short chain alcohols and anesthetics act, in part, by inhibition of the excitatory effect of glutamate at the NMDA receptor. While effects of several of these volatile agents on NMDA-gated currents have been demonstrated, there has been no direct comparison of different chemical classes of CNS depressant drugs on NMDA-gated currents. Here, whole-cell voltage clamp measurements of currents gated by 100 microM NMDA from cultured cerebrocortical neurons were examined in the presence of varying concentrations of the alcohols ethanol and hexanol, the halogenated alcohol trichloroethanol, the halogenated alkane halothane and the halogenated ethers isoflurane and sevoflurane. ⋯ Onset kinetics for the CNS depressants was similar with tau values near 100 ms. Offset kinetics was more variable with tau ranging from 88.2 ms for ethanol to 221.4 ms for trichloroethanol. These data indicate that a wide variety of volatile hydrocarbon based CNS depressants produce a similar inhibition of NMDA-gated currents and that the kinetics for these agents are inconsistent with an open channel block.