Brain research
-
Clonidine, a specific alpha2-adrenergic receptor agonist, has been found to be effective for the treatment of neuropathic pain, the mechanism underlying the effect is, however, not well understood. Here, the effect of clonidine on long-term potentiation (LTP) of C-fiber evoked field potentials in spinal dorsal horn, which is a synaptic model of injury-induced hyperalgesia, was investigated. ⋯ We found that (1) Clonidine completely blocked LTP induction, when applied 30 min before tetanic stimulation and depressed spinal LTP, when applied 30 min and 3 h after LTP induction. (2) The inhibitory effect of clonidine on spinal LTP had two phases: a fast phase lasting for about 3.5 h and a slow phase persisting for the rest time of experiments (up to 8 h after drug). (3) Spinal clonidine at low dose (10.7 micro g/100 micro l) depressed spinal LTP but not C-fiber baseline response and at higher dose (107 micro g/100 micro l) depressed both of them. (4) Pretreatment with alpha2-adrenergic receptor antagonist yohimbine completely blocked the inhibitory effect of clonidine. (5) Pretreatment with muscarinic receptor antagonist atropine, nitric oxide synthesis inhibitor l-NNA or cGMP inhibitor ODQ depressed the fast phase inhibition significantly and abolished the slow phase inhibition completely. These results suggest that clonidine may exert analgesic effect by depressing the synaptic plasticity in spinal dorsal horn, via activation of muscarinic receptor-NO-cGMP pathway.
-
LPA (lysophosphatidic acid) specific endothelial differentiation gene (EDG) receptors have been implicated in various anti-apoptotic pathways. Ischemia of the brain and retina causes neuronal apoptosis, which raises the possibility that EDG receptors participate in anti-apoptotic signaling in ischemic injury. We examined the expression of EDG receptors in a model of retinal ischemia-reperfusion injury and also tested LXR-1035, a novel analogue of LPA, in the rat following global retinal ischemic injury. ⋯ We found that the normal retina has a baseline expression of the LPA receptors, EDG-2 and EDG-4, which are significantly upregulated in the inner layers in response to ischemia. Animals pretreated with LXR-1035 had dose-dependent, significant reductions in histopathologic damage and significant improvement in functional deficits compared with corresponding vehicle-controls, after 45 and 60 min of ischemia. These results suggest that LPA receptor signaling may play an important role in neuroprotection in retinal ischemia-reperfusion injury.