Brain research
-
Secondary brain damage plays a critical role in the outcome of patients with traumatic brain injury (TBI). The multiple mechanisms underlying secondary brain damage, including posttraumatic cerebral ischemia, glutamate excitotoxicity, oxidative stress, calcium overload and inflammation, are associated with increased mortality and morbidity after head injury. TBI is documented to have detrimental effects on mitochondria, such as alterations in glucose utilization and the depression of mitochondrial oxidative phosphorylation. ⋯ The differences may indicate the degree of metabolic and physiologic dysfunction. Our results will better define the roles of gene expression and metabolic function in long-term prognosis and outcome after TBI. With a considerable understanding of post-injury mitochondrial dysfunction, therapeutic interventions targeted to the mitochondria may prevent secondary brain damage that leads to long-term cell death and neurobehavioral disability.
-
This neuroimaging study investigated the neural mechanisms of the effect of conversation on visual event detection during a driving-like scenario. The static load paradigm, established as predictive of visual reaction time in on-road driving, measured reaction times to visual events while subjects watched a real-world driving video. Behavioral testing with twenty-eight healthy volunteers determined the reaction time effects from overt and covert conversation tasks in this paradigm. ⋯ We identified a frontal-parietal network that maintained event detection performance during the conversation task while watching the driving video. Increased brain activations for conversation vs. no conversation during such simulated driving was found not only in language regions (Broca's and Wernicke's areas), but also specific regions in bilateral inferior frontal gyrus, bilateral anterior insula and orbitofrontal cortex, bilateral lateral prefrontal cortex (right middle frontal gyrus and left frontal eye field), supplementary motor cortex, anterior and posterior cingulate gyrus, right superior parietal lobe, right intraparietal sulcus, right precuneus, and right cuneus. We propose an Asynchrony Model in which the frontal regions have a top-down influence on the synchrony of neural processes within the superior parietal lobe and extrastriate visual cortex that in turn modulate the reaction time to visual events during conversation while driving.
-
Rehabilitation improves recovery after intracerebral hemorrhage (ICH) in rats. In some cases, brain damage is attenuated. In this study, we tested whether environmental enrichment (EE) combined with skilled reach training improves recovery and lessens brain injury after ICH in rats. ⋯ Unexpectedly, REHAB treatment lessened spontaneous use of the contralateral-to-ICH limb at 4 (p=0.045) and 6 weeks (p=0.041). In summary, the combination of EE and reach training significantly attenuates lesion volume (striatal injury) while improving skilled reaching and walking ability. These findings encourage the use of early rehabilitation therapies in patients suffering from basal ganglia hemorrhaging.
-
A subset of German function verbs can be used either in a full, concrete, 'heavy' ("take a computer") or in a more metaphorical, abstract or 'light' meaning ("take a shower", no actual 'taking' involved). The present magnetoencephalographic (MEG) study explored whether this subset of 'light' verbs is represented in distinct cortical processes. A random sequence of German 'heavy', 'light', and pseudo verbs was visually presented in three runs to 22 native German speakers, who performed lexical decision task on real versus pseudo verbs. ⋯ Thus, 'heavy' versus 'light readings' of verbs already modulate early posterior visual evoked response even when verbs are presented in isolation. This response becomes clearer in the disambiguating contextual condition. This type of study shows for the first time that language processing is sensitive to representational differences between two readings of one and the same verb stem.
-
Transient receptor potential vanilloid 1 (TRPV1) receptors are critical to nociceptive processing. Understanding how these receptors are modulated gives insight to potential therapies for pain. We demonstrate using double labeling immunohistochemistry that Group II metabotropic glutamate receptors (mGluRs) are co-expressed with TRPV1 on rat dorsal root ganglion (DRG) cells. ⋯ The data indicate that group II mGluRs and TRPV1 receptors are co-expressed on peripheral nociceptors and activation of mGluRs can inhibit painful sensory transmission following TRPV1 activation. The data are consistent with group II and TRPV1 receptors being linked intracellularly by the cAMP/PKA pathway. Peripheral group II mGluRs are important targets for drug discovery in controlling TRPV1-induced nociception.