Brain research
-
Protein 4.1 (band 4.1 or 4.1R) was originally identified as an abundant protein of the human erythrocyte, in which it stabilizes the spectrin/actin cytoskeleton. Subsequently, several new family members, 4.1N, 4.1G and 4.1B, have been identified, which are expressed in many cell types, in particular at cell-cell junctions. ⋯ Additionally, we found that 4.1B is ablated in the hair cells of both myosin XV and whirlin mutant mice at all stages in hair cell development. These results suggest that 4.1 family members play important roles in the development and maintenance of the inner ear hair cells, and that 4.1B may be a member of the myosin XV-whirlin complex that is important for stereocilia maturation.
-
To test the hypothesis that the cellular mechanism whereby chronic deep brain stimulation of the subthalamic nucleus (STN-DBS) induces the improvement of motor deficits lasting after stimulation in the hemiparkinsonian (hemi-PD) rat involves the NMDA receptor-dependent processes in neurons receiving afferents from the STN, we examined whether the NMDA receptor antagonist prevents the alleviating after-effect of repeated STN-DBS on motor deficits in hemi-PD. The cylinder test was performed before and after repeated STN-DBS over 3 days in hemi-PD that received a unilateral injection of 6-OHDA into the medial forebrain bundle 3 weeks prior to STN-DBS experiments. ⋯ Both MK-801 (0.1 mg/kg) and CPP (0.5 mg/kg) completely prevented the improvement of the akinetic motor deficit after repeated STN-DBS. These results support the hypothesis that activation of the NMDA receptor and subsequent cellular processes in neurons receiving the afferents from the STN may involve in the mechanism underlying the alleviating after-effect of chronic STN-DBS on the akinetic motor deficit in hemi-PD.