Brain research
-
In social anxiety disorder (SAD), impairments in limbic/paralimbic structures are associated with emotional dysregulation and inhibition of the medial prefrontal cortex (MPFC). Little is known, however, about alterations in limbic and frontal regions associated with the integrated morphometric, functional, and structural architecture of SAD. Whether altered gray matter volume is associated with altered functional and structural connectivity in SAD. ⋯ Reduced limbic/paralimbic volume, together with increased resting-state functional connectivity, suggests the existence of a compensatory mechanism in SAD. Increased MPFC volume, consonant with enhanced structural connectivity, suggests a long-time overgeneralization of structural connectivity and a role of this area in the mediation of clinical severity. Overall, our results may provide a valuable basis for future studies combining morphometric, functional and anatomical data in the search for a comprehensive understanding of the neural circuitry underlying SAD.
-
Exposure of newborn rats to antiepileptics such as barbiturates has long-lasting detrimental effects on the hippocampus and hippocampus-dependent behavior. However, the long-term consequences of neonatal administration with barbiturates on the hippocampal synaptic plasticity remain unresolved. In this study, we investigated the long-lasting effects of a neonatal administration of pentobarbital on spatial memory, paired-pulse plasticity in the population spikes, and long-term potentiation (LTP) in the hippocampal CA1 region of rats in vivo. ⋯ Our present findings indicate that neonatal treatment with pentobarbital causes alterations in function of the hippocampal inhibitory synaptic transmission that persist into adulthood, likely contributing to the long-lasting abnormalities in the hippocampal LTP as well as learning ability. We also demonstrated significant respiratory disturbances, i.e., severe hypoxia, hypercapnia, and extracellular acidosis, in rats treated with pentobarbital on P7. Given that extracellular acidosis can also modulate synaptic transmission in the developing hippocampus, this finding led us to speculate regarding the influence of respiratory disturbances in pentobarbital-induced long-lasting hippocampal dysfunctions.