Brain research
-
The blockade of the lateral parabrachial nucleus (LPBN) with GABA(A) receptor agonist muscimol induces robust hypertonic NaCl and water intake by rats. In the present study we investigated the effects of previous injections of losartan (AT(1) angiotensin receptor antagonist) into the LPBN on 0.3M NaCl and water intake induced by muscimol injected bilaterally in the same area in fluid replete rats and in rats treated with the diuretic furosemide combined with a low dose of the angiotensin-converting enzyme inhibitor captopril injected subcutaneously. ⋯ In rats treated with furosemide+captopril, pre-treatment with losartan into the LPBN attenuated the increase of 0.3M NaCl intake produced by muscimol (12.8±5.3, vs. saline+muscimol: 36.7±6.7 ml/3h) without changing water intake. Therefore, the results suggest that deactivation of LPBN inhibitory mechanisms by muscimol injections into the LPBN is facilitated by endogenous angiotensin II acting on AT(1) receptors in the LPBN, which drives rats to ingest large amounts of hypertonic NaCl.
-
Exercise may contribute to prevention of the cognitive decline and delay the onset of the Alzheimer's disease (AD). We evaluated the effects of continuous non-shock treadmill exercise in adult and aged male APP/PS1 double mutant transgenic mice. Adult (7-8 month-old) and aged (24 month-old) male APP/PS1 transgenic and wild-type mice were randomly assigned to either sedentary or exercise groups. ⋯ In adult APP/PS1 transgenic mice, the exercise paradigm increased exploratory activity and reduced anxiety with an associated increase in numbers of serotonergic neurons in the raphe nucleus. In addition, the exercise paradigm also reduced amyloid-β peptide (Aβ) levels and microglia activation, but not enough to reduce the plaque loading in the hippocampus of the APP/PS1 transgenic mice. Therefore, these findings suggest that there may exist an age-related difference in the effect of continuous non-shock treadmill exercise training on AD.
-
Our previous studies have demonstrated that hyperbaric oxygen (HBO) preconditioning induces tolerance to focal cerebral ischemia. The present study aimed to investigate whether autophagy is involved in the neuroprotection elicited by HBO preconditioning in a rat model of transient focal cerebral ischemia. Twenty-four hours after the completion of HBO preconditioning (2.5 atm absolute in 100% oxygen for 60 min per day for 5 consecutive days), male Sprague-Dawley rats were subjected to focal cerebral ischemia by middle cerebral artery occlusion (MCAO) for 120 min. ⋯ Furthermore, 3-MA treatment before MCAO aggravated subsequent cerebral ischemic injury. In contrast, pretreatment with rapamycin up-regulated LC3-II and Beclin 1 after reperfusion and mimicked the neuroprotective effect of HBO preconditioning. These results indicate that HBO preconditioning elevates autophagic activity, which elicits a neuroprotective effect against ischemic injury in the brain, and suggest a novel mechanism of HBO preconditioning-induced tolerance against transient focal cerebral ischemia.
-
Although the effects of ketogenic diets on energy and glucose homeostasis have been controversial, elevation of serum ketone levels by subcutaneous injection of β-hydroxybutyrate (BHB) can improve glucose homeostasis. Ketones may work through the brain; therefore, we evaluated whether the intracerebroventricular (ICV) infusion of β-hydroxybutyrates would also modulate peripheral energy and glucose homeostasis, and through what mechanisms, in diabetic rats fed a high fat diet in short- and long-term studies. Short-term (3h) central injection of BHB (50 μg/h) improved serum glucose levels and peripheral insulin sensitivity compared to the artificial cerebrospinal fluid (CSF) group among 90% pancreatectomized (Px) diabetic rats, but not in non-diabetic Sham rats. ⋯ Hepatic insulin signaling (tyrosine phosphorylation of IRS2→serine phosphorylation of Akt→reduced expression of PEPCK) was potentiated and hepatic glucose production in the hyperinsulinemic state was suppressed in the diabetic rats. In addition, glucose tolerance was improved by central BHB infusion through enhanced whole body glucose disposal rates, but insulin secretion was not affected in the diabetic rats. In conclusion, mild ketosis by central infusion of ketones improves energy and glucose metabolism through the potentiation of leptin and insulin signaling in the hypothalamus of diabetic rats.
-
Delivery of cellular and/or trophic factors to the site of injury may promote neural repair or axonal regeneration and return of function after spinal cord injury. Engineered scaffolds provide a platform to deliver therapeutic cells and neurotrophic molecules. To explore therapeutic potential of engineered neural tissue, we generated an artificial neural construct in vitro, and transplanted this construct into a completely transected spinal cord of adult rats. ⋯ Furthermore, Nissl staining revealed that host neuron survival rate was significantly increased in rats with full treatments. However, there were no biotin dextran amine (BDA) anterograde tracing fibers crossing through the injury site, suggesting the limited ability of corticospinal tract axonal regeneration. Taken together, although our artificial neural construct permits grafted cells to differentiate into neuronal phenotype, synaptogenesis, axonal regeneration and partial locomotor function recovery, the limited capacity for corticospinal tract axonal regeneration may affect its potential therapy in spinal cord injury.