Brain research
-
Emerging experimental and clinical data suggest that severe illness, such as traumatic brain injury (TBI), can induce critical illness-related corticosteroid insufficiency (CIRCI). However, underlying mechanisms of this TBI-associated CIRCI remain poorly understood. We hypothesized that dexamethasone (DXM), a synthetic glucocorticoid, which was widely used to treat TBI, induces hypothalamic neuronal apoptosis to aggravate CIRCI. ⋯ A significantly increase in TUNEL positive cells were detected in cultured cells treated with a high-dose of DXM after 18h. Neurites of hypothalamic neuron were dramatically thinner and the numbers of dendritic beadings increased in neurons treated with the high dose of DXM for 12h. In conclusion, high-dose DXM induced hypothalamic neurons to undergo apoptosis in vivo and in vitro, which may aggravate TBI-associated CIRCI.
-
Diabetes mellitus and impaired glucose metabolism are the most important risk factors for stroke. We recently demonstrated that cerebral ischemic stress causes hyperglycemia (i.e., post-ischemic hyperglycemia) and may worsen ischemic neuronal damage in a mouse model of focal ischemia. However, the detailed mechanisms are still unknown. ⋯ Interestingly, the development of ischemic neuronal damage was significantly suppressed by i.p. and i.c.v. administration of phlorizin on day 3 after BCAO. In addition, BCAO-induced spasticity was significantly suppressed by PHZ (40μg/mouse, i.c.v.) from using gait analysis. Our results indicated that cerebral SGLT was involved in the development of ischemic neuronal damage in global ischemia.
-
Recently, it has been strongly suggested that reciprocal interactions between nitrergic and dopaminergic systems play a crucial role in the control of the nigrostriatal pathway. Degeneration of dopaminergic neurons in the substantia nigra (SN) in Parkinson's disease leads to disturbances in the nitrergic transmission in the basal ganglia. In the present study, we aimed to compare regional distribution of nNOS immunoreactivity and NADPH-diaphorase activity in the SN and subthalamic nucleus (STN) of unilaterally 6-OHDA-lesioned rats treated chronically with l-DOPA (25mg/kg) and the nitric oxide donor, molsidomine (2 or 4mg/kg). ⋯ Degeneration of the nigrostriatal pathway had no influence on the number of nNOS-ir neurons in the STN. NADPH-histochemistry revealed nNOS activity only in a part of neurons of that structure. Our results make an essential contribution to the research on the role of nitric oxide in the regulation of basal ganglia function.
-
Neuropathic pain is one of the major problems of patients with spinal cord injury (SCI), which remains refractory to treatment despite a variety of therapeutic approach. Multimodal neuroimaging could provide complementary information for brain mechanisms underlying neuropathic pain, which could be based on development of more effective treatment strategies. Ten patients suffering from chronic neuropathic pain after SCI and 10 healthy controls underwent FDG-PET, T1-anatomical MRI and diffusion tensor imaging. ⋯ These results indicated that white matter changes imply abnormal pain modulation in patients as well as motor impairment. Our study showed the functional and structural multimodal imaging modality commonly identified the possible abnormalities in the brain regions participating pain modulation in neuropathic pain. Multifaceted imaging studies in neuropathic pain could be useful elucidating precise mechanisms of persistent pain, and providing future directions for treatment.
-
This study clarified the neural mechanisms underlying jaw movements in pharyngolaryngeal reflexes such as swallowing in rats. After retrograde tracer injections into the ventromedial division (Vmovm) of the trigeminal motor nucleus (Vmo) containing jaw-opening (JO) motoneurons or into the dorsolateral division (Vmodl) of Vmo containing jaw-closing (JC) motoneurons, JO and JC premotoneurons were labeled with an ipsilateral predominance in the medial and intermediate subnuclei of the rostrocaudal middle two-thirds of the nucleus of the solitary tract (Sol); JC premotoneurons were also in the lateral subnucleus of Sol. After anterograde tracer injections into the Sol, axons were labeled with an ipsilateral predominance in the Vmovm and Vmodl, prominently in the ipsilateral Vmovm. ⋯ Double labeling experiments demonstrated contacts between the afferent terminals and the JO and JC premotoneurons. The present study has for the first time revealed the differential distribution of JO and JC premotoneurons in the Sol and features of their projections from the Sol, as well as their connections with SLN and GpN-ct afferent inputs. The JO and JC premotoneurons in the Sol may play an important role in generation and organization of jaw movements in pharyngolaryngeal reflexes evoked by SLN and GpN-ct inputs, such as swallowing.