Brain research
-
Facial allodynia is a migraine symptom that is generally considered to represent a pivotal point in migraine progression. Treatment before development of facial allodynia tends to be more successful than treatment afterwards. As such, understanding the underlying mechanisms of facial allodynia may lead to a better understanding of the mechanisms underlying migraine. ⋯ Pretreatment with either of two compounds broadly used as putative glial/immune inhibitors (minocycline, ibudilast) prevented the development of facial allodynia, as did treatment after supradural inflammatory soup but prior to the expression of facial allodynia. Lastly, the toll-like receptor 4 (TLR4) antagonist (+)-naltrexone likewise blocked development of facial allodynia after supradural inflammatory soup. Taken together, these exploratory data support that activated glia and/or immune cells may drive the development of facial allodynia in response to supradural inflammatory soup in unanesthetized male rats.
-
Paradoxical sleep is closely associated with depression, and brain monoamine oxidase A (MAOA) plays an important role in depression. However, the precise relationship between sleep and depression and the role of MAOA in this process remains unknown. Therefore, we established a paradoxical sleep deprivation model using the "multiple small platforms over water" protocol. ⋯ In addition, the levels of the MAOA protein and mRNA in the amygdala and hippocampus significantly increased. Furthermore, the immobility time and sucrose preference rate of P5d mice recovered when the mice were injected with phenelzine. The P5d mice displayed depressive-like behaviors, which were likely modulated by the MAOA levels in the amygdala and hippocampus.
-
To assess structural brain changes in survivors of acute lymphoblastic leukemia (ALL) with chemotherapy treatment by combining voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS). ⋯ Our results indicate that ALL patients had smaller GM volume and WM integrity changes in several regions. The current study may shed further light on the potential brain effects of chemotherapy treatment in ALL patients.
-
Cerebral ischemia/reperfusion injury can result in neuronal death, which further results in brain damage and can even lead to death. Although recent studies showed that rosmarinic acid (RA) exerts neuroprotective effects and attenuates ischemia-induced brain injury and neuronal cell death, little is known about the precise mechanisms that occur during cerebral ischemia/reperfusion (I/R). Therefore, the aim of this study was to examine the underlying mechanism of the neuroprotective effects of RA against ischemic brain injury induced by cerebral I/R. ⋯ Additionally, RA significantly protected neurons in the hippocampal CA1 region against cerebral I/R-induced damage. Furthermore, RA increased the phosphorylation of Akt1, downregulated the phosphorylation of JNK3 and reduced the expression of cleaved caspase-3. Finally, the Akt inhibitor LY294002 reversed all the protective effects of RA, indicating that RA protects neurons in the hippocampal CA1 region from ischemic damage through the Akt/JNK3/caspase-3 signaling pathway.
-
The pituitary adenylyl cyclase-activating polypeptide (PACAP) and its G protein-coupled receptors, PAC1, VPAC1 and VPAC2 form a system involved in a variety of biological processes. Although some sympathetic stimulatory effects of this system have been reported, its central cardiovascular regulatory properties are poorly characterized. ⋯ In vivo, this pathway converges onto transient reduction in heart rate of conscious rats. Therefore we demonstrate a VPAC1-dependent mechanism in the central parasympathetic regulation of the heart rate, adding to the complexity of PACAP-mediated cardiovascular modulation.