Brain research
-
The present study aims to investigate changes of spinal cord AMPA receptor GluR1 and its phosphorylation in inflammatory and neuropathic pain. Complete Freund's adjuvant (CFA) injection into the hind paw produced inflammatory thermal hyperalgesia that was assessed by decreased response latency to radiant heat; spinal nerve ligation (SNL) was used to induce mechanical allodynia that was evaluated with von Frey hairs. ⋯ In contrast, neither GluR1 nor pGluR1 showed any significant change in rats following SNL. These results suggest that phosphorylated GluR1 (pGluR1-Ser845 and pGluR1-Ser831) might play a role in the induction of inflammatory but not neuropathic pain.
-
Hypoxia-inducible transcription factor-1 (HIF-1) is critically involved in adaptive endogenous mechanisms to hypoxic brain injury by transcriptional activation of specific target genes that restore oxygen supply. Exogenously, neuroprotective properties of levetiracetam (LEV) have been suggested in experimental cerebral ischemia and epilepsy. We aimed to elucidate 1) effects of acute hypoxic distress on HIF-1 and vasoactive target genes, and 2) effects of LEV on HIF-1-regulated mechanisms in the brain at early developmental stages. ⋯ Moreover, significant changes of VEGF and NOS mRNA levels did not occur with the exception that hypoxia-induced decreased iNOS levels were not observed in P0 brains. We conclude that acute systemic hypoxia differentially affects expression of HIF-1-regulated vasoactive factors in the newborn mouse brain. Of clinical importance, LEV treatment did not alter crucial HIF-1-regulated neuroprotective mechanisms.
-
Reports of beneficial effects of exercise on psychological health in humans are increasingly supported by basic research studies. Exercise is hypothesized to regulate antidepressant-related mechanisms and we therefore characterized the effects of chronic exercise in mouse behavioral paradigms relevant to antidepressant actions. Mice given free access to running wheels showed antidepressant-like behavior in learned helplessness, forced-swim (FST) and tail suspension paradigms. ⋯ A possible functional contribution of a BDNF signaling pathway to FST performance in exercising mice was investigated using the specific MEK inhibitor PD184161 to block the MAPK signaling pathway. Subchronic administration of PD184161 to exercising mice blocked the antidepressant-like behavioral response seen in vehicle-treated exercising mice in the FST. In summary, chronic wheel-running exercise in mice results in antidepressant-like behavioral changes that may involve a BDNF related mechanism similar to that hypothesized for antidepressant drug treatment.
-
Comparative Study
Age-related differences in brain activity during verbal recency memory.
In the current event-related fMRI study young and older adults underwent fMRI scanning while performing recognition, recency and reverse alphabetizing tasks. The reverse alphabetizing task served as a control for executive processes, such as working memory manipulation and monitoring (Henson, R. N., Shallice, T., et al., 1999. ⋯ In young adults, activity in these regions was not strongly related to retrieval performance. These results suggest that older adults exhibited deficits in medial temporal and parietal function during retrieval, which was functionally compensated for by increased recruitment of prefrontal and precuneus regions. This functional compensation was sufficient for maintaining recognition but not recency retrieval in older adults.
-
Recent evidence suggest that ATP plays a role as an endogenous pain mediator generating and/or modulating pain signaling from the periphery to the spinal cord. In this study we evaluated the effects of intraperitoneal administration of P2 receptor antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), evaluating pain related behaviours and monitoring the expression of Fos, a marker of activated neurons, in an experimental mouse model of neuropathic pain (sciatic nerve tying). The PPADS administration decreased both tactile allodynia and thermal hyperalgesia in a time and dose dependent manner. ⋯ Moreover, non-noxious stimulation induced an increase of Fos positive neurons in the spinal cord of animals with tying of sciatic nerve. PPADS administration partially reversed this increase. These results suggest that PPADS reduces neuronal activation at spinal cord level and that P2 receptors are involved in the retrograde signalling progress exciting sensory spinal neurons.