Brain research
-
Major problem involved in treatment of chronic pain with morphine is the development of tolerance and dependence. Previous studies have demonstrated the participation of melanocortin (MC) system in the development of tolerance to antinociceptive effect of morphine. However, the impact of supraspinal MC4 receptors (MC4 R) modulation on this phenomenon and morphine withdrawal hyperalgesia remained unexplored. ⋯ Furthermore, acute treatment with HS014 (0.008 and 0.04 ng/rat, icv) dose dependently attenuated the withdrawal hyperalgesia. This suggests the involvement of central MC4 R in the mechanism of development of tolerance and dependence following chronic morphine administration. We speculate that targeting this receptor may be a novel strategy to improve the effectiveness of morphine in the treatment of chronic pain.
-
There are no effective treatments for intracerebral hemorrhage (ICH). Although inflammation is a potential therapeutic target, there is a dearth of information about time-dependent and cell-specific changes in the expression of inflammation-related genes. Using the collagenase-induced ICH model in rats and real-time quantitative RT-PCR we monitored mRNA levels of markers of glial activation, pro- and anti-inflammatory cytokines, enzymes responsible for cytokine activation and several matrix metalloproteases at 6 h and 1, 3 and 7 days after ICH onset. ⋯ Included is the first demonstration that astrocytes are an important source of interleukin-1beta (IL-1beta), interleukin-1 receptor antagonist (IL-1ra), interleukin-6 (IL-6) and MMP-12. Importantly, our results demonstrate that while delayed minocycline treatment effectively reduces early up-regulation of TNFalpha and MMP-12, its efficacy is lost when treatment is extended for up to a week, and it does not reduce several other genes associated with microglia activation. These results suggest caution in extrapolating to ICH the promising results of minocycline treatment in other models of brain injury.
-
Pain associated with cancer, particularly when tumors metastasize to bone, is often severe and debilitating. Better understanding of the neurobiological mechanisms underlying cancer pain will likely lead to the development of more effective treatments. The aim of this study was to characterize changes in response properties of nociceptive dorsal horn neurons following implantation of fibrosarcoma cells into and around the calcaneus bone, an established model of cancer pain. ⋯ Specifically, the proportion of WDR neurons that exhibited ongoing activity and their evoked discharge rates were greater in tumor-bearing than in control mice. In addition, WDR neurons exhibited lower response thresholds for mechanical and heat stimuli, and increased responses to suprathreshold mechanical, heat, and cold stimuli. Our findings show that sensitization of WDR neurons contributes to cancer pain and supports the notion that the mechanisms underlying cancer pain differ from those that contribute to inflammatory and neuropathic pain.
-
An event-related potential (ERP) experiment was conducted to explore the differences between Chinese-speaking dyslexic children and normal school children in orthographic and phonological processing during Chinese sentence reading. Participants were visually presented with sentences, word-by-word and were asked to judge whether the sentences were semantically acceptable. The crucial manipulation was on the sentence-final two-character compound words, which were either correct or incorrect. ⋯ In contrast, the dyslexic children in general showed no differences between experimental conditions for P200 and N400, although the more detailed time course analyses did reveal some weak effects for the N400 component between experimental conditions. In addition, the mean amplitude of N400 in the homophonic condition was less negative-going for the dyslexics than for the controls. These findings suggest that Chinese dyslexic children have deficits in processing orthographic and phonological information conveyed by characters and, compared with normal children, they rely more on phonological information to access lexical semantics in sentence reading.
-
Intrauterine growth restriction (IUGR) can increase susceptibility to perinatal hypoxic brain injury for reasons that are unknown. Previous studies of the neonatal IUGR brain have suggested that the cerebral mitochondrial capacity is reduced but the glycolytic capacity increased relative to normal weight (NW) neonates. In view of these two factors, we hypothesized that the generation of brain lactate during a mild hypoxic insult would be greater in neonatal IUGR piglets compared to NW piglets. ⋯ ADCs in the high lactate IUGR piglets were significantly lower during hypoxia than in all the other piglets. This signifies increased diffusion of water into brain cells during hypoxia, possibly in response to increased intracellular osmolality caused by high intracellular lactate concentrations. These findings support previous studies showing increased susceptibility to hypoxic brain injury in IUGR neonates but suggest that increased glycolysis during hypoxia confers neuroprotection in some IUGR piglets.