Brain research
-
We have previously documented that peripheral N-methyl-d-aspartate (NMDA) receptor mechanisms are involved in nociceptive reflex increases in jaw muscle activity to injection of mustard oil or glutamate into the rat temporomandibular joint (TMJ). The aim of the present study was to determine whether peripheral NMDA receptor mechanisms are also involved in the nociceptive reflex responses in the jaw muscles evoked by injection of the inflammatory irritant and algesic chemical capsaicin into the TMJ. ⋯ The capsaicin injection following pre-injection of vehicle evoked significant increases in EMG activity in both digastric and masseter muscles whereas pre-injection of MK-801 or APV into the TMJ resulted in a significant concentration-related reduction in the magnitude of capsaicin-evoked digastric and masseter EMG activity (ANOVA-on-ranks, P < 0.05). This finding indicates that capsaicin-evoked digastric and masseter EMG activity can be attenuated by pre-injection into the TMJ of NMDA receptor antagonists, and that the activation of peripheral NMDA receptors may be important in the mechanisms whereby capsaicin evokes nociceptive trigeminal responses.
-
The central body temperature (T(b)) regulation system during hibernation was investigated in Syrian hamsters of either sex. Hibernation induced in Syrian hamsters by housing them in a cold room under short day-light/dark cycle was confirmed by marked reductions in the heart rate, T(b) and respiratory rate. The hibernation of hamsters was classified into (i) entrance, (ii) maintenance and (iii) arousal phases according to T(b) changes. ⋯ Furthermore, ICV injection of the anti-TRH antibody ameliorated the T(b) elevations induced by tactile stimulation. These results suggest that activation of the A1-receptor by adenosine is important for the generation of hypothermia in the entrance phase, and that activation of the mu1-opioid receptor by opioid peptides is required for perpetuation of hypothermia in the maintenance phase. In addition, TRH is a key endogenous substance involved in T(b) elevations during the arousal phase of hibernating hamsters.
-
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder, characterized by the degeneration of upper and lower motor neurons (MNs). Central nervous system features include a loss of Betz cells and other pyramidal cells from sensorimotor cortex. The intrinsic mechanism underlying this selective motor neuron loss has not been identified. ⋯ These results suggest that, not only has a PCD pathway been activated in the cortical MNs, but one that may be unique to ALS. Moreover, these findings suggest that earlier diagnosis and therapeutic intervention may be possible for successful treatment of ALS. Consequently, these enzymes may provide the biochemical markers to enable earlier diagnosis of ALS and molecular targets for the development of new therapeutic compounds.
-
Neuropeptide W-23 (NPW23) is an endogenous ligand of both GPR7 and GPR8, and neuropeptide B (NPB) is an endogenous ligand of GPR7. GPR7 mRNA has been detected in regions of the cortex, the hippocampus, the hypothalamus, and the spinal cord in the rat, but GPR8 has not been found in rodents. GPR7 and GPR8 receptors have structural features in common with both opioid and somatostatin receptors. ⋯ I.t. injection of either 10 microg of NPW23 or 10 microg of NPB had no effect in the mechanical nociceptive test. I.t. injection of either 10 microg of NPW23 or 10 microg of NPB significantly suppressed the expression of Fos-like immunoreactivity of the L4-5 spinal dorsal horn induced by paw formalin injection. These data suggest that both spinally-applied NPW23 and NPB suppressed the input of nociceptive information to the spinal dorsal horn, produced an analgesic effect in the formalin test, and attenuated the level of mechanical allodynia in the carrageenan test, and that either spinally applied NPW23 or spinally applied NPB had no effect in the physiological condition.
-
Sprague-Dawley rats with unilateral lesion of the medial forebrain bundle by 6-hydroxydopamine showed marked decrease in the expression of dopamine D1 and D2 receptors in the prefrontal cortex. Simvastatin (10 mg/kg/day for 4 weeks) restored receptor expression to control levels. Given the association of dopaminergic dysfunction in the prefrontal cortex and cognitive deficits in Parkinson's disease, these findings may have implication in the treatment of cognitive decline in advanced Parkinson's disease.