Brain research
-
Human bone marrow stromal cells (hMSCs) enhance neurological recovery after stroke in rodents, possibly via induction of growth factors. We therefore elected to test the effects of hMSC treatment on insulin-like growth factor 1 (IGF-1), which plays an important role in growth, development, neuroprotection and repair in the adult. Rats (n=57) were subjected to permanent middle cerebral artery occlusion (MCAo) and injected intravenously with 3 x 10(6) hMSCs or phosphate-buffered saline (PBS) at 1 day after MCAo. ⋯ MAB1281-labeled hMSCs entered the ischemic brain and increased time-dependently. hMSC treatment significantly increased IGF-1 mRNA and BrdU(+), DCX(+), IGF-1(+) and IGF-1R(+) cells compared to PBS-treated rats (p<0.05). The percentage of BrdU(+) or DCX(+) cells colocalized with IGF-1 increased in the hMSC-treated rats compared to the PBS-treated rats (p<0.05). IGF-1 and IGF-1R may contribute to improved functional recovery and increased neurogenesis after treatment of stroke with hMSCs.
-
Opioids are effective topical analgesics in the radiant heat tailflick assay and display synergistic interactions with a number of other classes of drugs. To determine whether these actions extend to other types of nociception, we examined the actions of topical morphine and lidocaine in a tail formalin assay in the mouse. Formalin responses in the tail were similar to those seen in the hind paw, but were limited to licking. ⋯ These studies validate the formalin assay in the tail and support the topical actions of opioids and other drugs in a second pain model. They also suggest supra-additive interactions between morphine and lidocaine similar to those previously seen. The tail formalin assay will be valuable in assessing the activity of topical drugs.
-
Voltage-activated Na+ channels in the primary sensory neurons are important for generation of action potentials and regulation of neurotransmitter release. The Na+ channels expressed in different types of dorsal root ganglion (DRG) neurons are not fully known. In this study, we determined the possible difference in tetrodotoxin-sensitive (TTX-S) and -resistant (TTX-R) Na+ channel currents between isolectin B4 (IB4)-positive and IB4-negative small DRG neurons. ⋯ TTX had no effect on the evoked action potential in IB4-positive neurons, but it inhibited the action potential generation in about 50% IB4-negative neurons. This study provides complementary new information that there is a distinct difference in the expression level of TTX-S and TTX-R Na+ channels between IB4-negative than IB4-positive small-diameter DRG neurons. This difference in the density of TTX-R Na+ channels is responsible for the distinct membrane properties of these two types of nociceptive neurons.
-
Comparative Study
The behavioral and neuroanatomical effects of IB4-saporin treatment in rat models of nociceptive and neuropathic pain.
One distinguishing feature of primary afferent neurons is their ability to bind the lectin IB(4). Previous work suggested that neurons in the inner part of lamina II (IIi), onto which IB(4)-positive sensory neurons project, facilitate nociceptive transmission following tissue or nerve injury. Using an IB(4)-saporin conjugate (IB(4)-SAP), we examined the contribution of IB(4)-positive neurons to nociceptive processing in rats with and without nerve injury. ⋯ Moreover, neuropeptide Y immunoreactivity (NPY-ir), which increases in the spinal cord after nerve injury, was unchanged in IB(4)-SAP-treated animals whereas immunoreactive PKCgamma decreased 2, but not 4, weeks post-injury. Quantitative RT-PCR revealed a reduction in P(2)X(3) mRNA in L4 DRG of IB(4)-SAP-treated animals, but no change in TrkA expression. Our results suggest that IB(4)-positive neurons in L4 are required for the full expression of NGF-induced hyperalgesia and participate in the behavioral and anatomical consequences that follow injury to the L5 spinal nerve.
-
Comparative Study
Dexamethasone inhibits proliferation of adult hippocampal neurogenesis in vivo and in vitro.
Activation of glucocorticoid receptor (GR) induces a reduction of adult hippocampal neurogenesis found in dentate gyrus (DG). However, the nature of specific effects by glucocorticoid in hippocampal neurogenesis is not known. In this report, we show differential effects of dexamethasone (DEX), a glucocorticoid receptor agonist, on proliferation and functional differentiation of adult hippocampal progenitor cells in DG. ⋯ In contrast, however, the activation of extracellular signal-regulated kinase (ERK) was downregulated 12 h, but not 28 days, after the DEX treatment. When adult hippocampal progenitor cell cultures were treated with subchronic DEX, proliferation of the progenitor cells was suppressed. Taken these in vitro and in vivo results together, it is concluded that glucocorticoid receptor activation blocks only proliferation, but not differentiation, in hippocampal neurogenesis.