Brain research
-
To investigate the neural activation in the primary somatosensory cortex (SI) that is induced by capsaicin-evoked secondary Abeta-fiber-mediated hyperalgesia with magnetic source imaging (MSI) in healthy humans. ⋯ Acute application of capsaicin produces an increase in the excitability of central neurons, e.g., in SI. This might be due to sensitization of central neurons so that normally innocuous stimuli activate pain signalling neurons or cortical neurons might increase their receptive fields.
-
The subventricular zone (SVZ) of the adult mouse brain retains the capacity to generate new neurons from stem cells. The neuronal precursors migrate tangentially along the rostral migratory stream (RMS) towards the olfactory bulb, where they differentiate as periglomerular and granular interneurons. In this study, we have investigated whether nitric oxide (NO), a signaling molecule in the nervous system with a role in embryonic neurogenesis, may be produced in the proximity of the progenitor cells in the adult brain, as a prerequisite to proposing a functional role for NO in adult neurogenesis. ⋯ Within the olfactory bulb, many small cells in the granular layer and around the glomeruli expressed either PSA-NCAM or NOS I and, in some cases, both markers. Colocalization was also found in a few isolated cells at a certain distance from the neurogenesis areas. The anatomical disposition shown indicates that NO may be released close enough to the neuronal progenitors to allow a functional influence of this messenger in adult neurogenesis.
-
Cessation of ethanol administration in ethanol-dependent rats results in an ethanol withdrawal (ETX) syndrome, including audiogenic seizures (AGS). The inferior colliculus (IC) is the initiation site for AGS, and membrane properties of IC neurons exhibit hyperexcitability during ETX. Previous studies observed that ETX alters GABA and glutamate neurotransmission in certain brain sites. ⋯ However, IPSPs during ETX displayed a significantly greater sensitivity to bicuculline. These data indicate that decreased GABA(A)-mediated inhibition and increased glutamate-mediated excitability in IC may both be critical mechanisms of AGS initiation during ETX, which is similar to observations in a genetic form of AGS. The common changes in IC neurotransmission in these AGS forms may be general mechanisms subserving AGS and other forms of auditory system pathophysiology in which the IC is implicated.
-
Exposure to stressful or fear-inducing environmental stimuli activates descending antinociceptive systems resulting in a decreased pain response to peripheral noxious stimuli. Stimulating mu opioid receptors in the basolateral nucleus of the amygdala (BLA) in anesthetized rats produces antinociception that is similar to environmentally induced antinociception in awake rats. Recent evidence suggests that both forms of antinociception are mediated via projections from the amygdala to the ventral periaqueductal gray (PAG). ⋯ Microinjection of a mu opioid receptor agonist into the BLA resulted in a time dependent increase in tail flick latency that was attenuated by preadministration of a mu opioid receptor or a neurotensin receptor antagonist into the ventral PAG. Microinjection of a delta(2) opioid receptor antagonist or an NMDA receptor antagonist into the ventral PAG was ineffective. These findings suggest that amygdala stimulation produces antinociception that is mediated in part by opioid and neurotensin release within the ventral PAG.
-
Comparative Study
Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27.
We have established a focal preconditioning (PC) paradigm that produces significant and prolonged ischemic tolerance (IT) of the brain to subsequent permanent middle cerebral artery occlusion (MCAO). PC using 10 min of MCAO induces brain tolerance at 1-7 days of reperfusion that requires active protein synthesis. The protective protein(s) involved are unknown. ⋯ The short duration of benign ischemia (PC) that produces IT produces a robust, long-lived cellular and protein synthetic response that extends throughout the entire cortex (i.e. well beyond the MCA perfusion territory). The resulting IT is associated with changes in astrocyte-activation that might provide increased support and protection from injury. Although both Hsp70 and Hsp27 may participate in the neuroprotection/brain tolerance induced by PC, the temporal expression patterns of these proteins indicate that they are not solely responsible for the tolerance to brain injury.