Brain research
-
The possibility that chronic exposure to power-line frequency (50 Hz) magnetic fields (MFs) might affect the acquisition or characteristics of focal and generalized seizures in amygdala kindled rats was studied. Acute, short-lasting 50-Hz MF exposure of fully kindled rats at either 1 or 100 microT had no effect on afterdischarge threshold (ADT) or seizure parameters recorded at ADT. In the chronic experiments, rats with electrodes implanted in the basolateral amygdala were exposed to a 50-Hz, 100-microT (1 Gauss) MF or to a sham field condition before and after onset of daily electrical stimulations over the whole period of kindling development. ⋯ Exposed rats needed about the same number of stimulations to kindle than sham exposed rats, but the cumulative afterdischarge duration to reach criterion (i.e., a stage 5 seizure) was significantly reduced in MF exposed animals. Post-kindling ADT was similar in the two groups, but MF exposed rats showed a significantly higher threshold for generalized seizures. The data indicate that chronic exposure of rats to a 50-Hz, 100-microT MF exerts weak inhibitory effects on some seizure parameters of the kindling model.
-
Central inflammation is an integral component and contributor of the pathology of many debilitating diseases and has been shown to produce spontaneous pain and hyperalgesia. Recently, administration of lipopolysaccharide (LPS) into the lateral ventricle of rats was shown to elicit both thermal hyperalgesia and tactile allodynia [K. Walker, A. ⋯ Immunohistochemical studies indicated an increased expression of activated macrophages in the brain parenchyma of primed rats but not in unprimed rats. Intraperitoneal (i.p., 2 mg/kg) administration of LPS had no significant effect on either thermal or mechanical thresholds in the first few hours after injection; however, priming rats via i.p. (0.2 mg/kg) or i.c.v. (0.2 microgram) LPS produced a reduction in both thermal nociceptive thresholds and mechanical response thresholds in rats given a subsequent i.p. injection of LPS. This study demonstrates that priming is an effective protocol for the induction of central inflammation and increases the duration of these behaviors after i.c. v. administration.
-
In 49 halothane-anesthetized rats, we characterized the responses of single neurons in the ventrolateral orbital cortex (VLO) to a noxious visceral stimulus (colorectal balloon distension, CRD), and studied the effects of intravenous morphine on these responses using standard extracellular microelectrode recording techniques. One hundred and four neurons were isolated on the basis of spontaneous activity. Fifty-seven (55%) responded to CRD, of which 32% had excitatory and 68% had inhibitory responses. ⋯ Naloxone (0.4 mg/kg i.v.) reversed the effects of morphine. Morphine and naloxone had no significant effects on spontaneous activity. These data support the involvement of VLO neurons in visceral nociception.
-
In order to study central neuronal components involved in subcutaneous (s.c.) bee venom-induced persistent pain (a new tonic pain model), we use Fos immunostaining technique to study the spatial and temporal patterns of neuronal activity in the spinal cord of anesthetized rats. Following intraplantar bee venom injection, Fos-like immunoreactive (ir) neurons were only seen from L1 to S3 rostrocaudally with distinct distribution at L4-5 segments. At segments of L1-2 and S1-3, Fos-ir labelings were diffusely and symmetrically distributed on both sides of the gray matter; however, at L4-5 segments, Fos-ir neurons were densely localized in medial portion of laminae I-II, less densely in laminae V-VI and a few in laminae VII and X ipsilateral to the injection side. ⋯ Within laminae III-IV, Fos-ir neurons could not be seen at 0.5 h, but began to be seen at 1 h and appeared to exist even at 24 h after bee venom. Systemic morphine suppressed c-Fos expression dose-dependently in both superficial and deep layers of dorsal horn and the latter region was much more sensitive to morphine than the former one. The present results demonstrated that prolonged neuronal activities in superficial and deep layers of dorsal horn were essential to mediation of bee venom induced tonic pain and may have different roles in generation and/or modulation of spontaneous pain and hyperalgesia and allodynia.
-
This study examined the effects of the administration of D-amphetamine on the regional accumulation of lactate and free fatty acids (FFAs) after lateral fluid percussion (FP) brain injury in the rat. Rats were subjected to either FP brain injury of moderate severity (1.9 to 2.0 atm) or sham operation. At 5 min after injury, rats were treated with either d-amphetamine (4 mg/kg, i.p.) or saline. ⋯ Neither levels of lactate nor levels of FFAs were increased in the contralateral cortex in the saline-treated injured rats at 30 min or 60 min after FP brain injury. The levels of lactate and FFAs in the contralateral cortex were also unaffected by the administration of D-amphetamine. These results suggest that the attenuation of increases in the levels of lactate and FFAs in the ipsilateral cortex and hippocampus may be involved in the amphetamine-induced improvement in behavioral outcome after lateral FP brain injury.