Brain research
-
Global cerebral ischemia leads to selective neuronal damage in the CA1 sector of the hippocampus and in the dorsolateral striatum. In addition, it results in deficits in spatial learning and memory as shown by an increase in escape latency and swim distance during the escape trials and a reduction of time spent in the quadrant of the former platform position during the probe trial of the water maze. Flupirtine is a non-opioid, centrally acting analgesic which has been shown to be neuroprotective against N-methyl-D-aspartate (NMDA)-mediated toxicity in vitro. ⋯ Post-treatment with flupirtine had no effect on the deficits in spatial learning and memory induced by 4VO. Neuronal damage in the CA1 sector of the hippocampus and in the striatum produced by 4VO was significantly attenuated with pre-treatment of flupirtine whereas post-treatment did not affect this neuronal damage. The present data demonstrate that pre-treatment with flupirtine exerts a protective effect on hippocampal and striatal neuronal damage and on deficits in spatial learning induced by 4VO.
-
Experiments were done in the conscious and unrestrained rat to identify central structures activated by electrical stimulation of afferent renal nerves (ARN) using the immunohistochemical detection of Fos-like proteins. Fos-labelled neurons were found in a number of forebrain and brainstem structures bilaterally, but with a contralateral predominance. Additionally, Fos-labelled neurons were found in the lower thoracolumbar spinal cord predominantly ipsilateral to the side of ARN stimulation. ⋯ The final area observed to contain Fos-labelled neurons in the central nervous system was the thoracolumbar spinal cord (T9-L1) which contained cells in laminae I-V of the dorsal horn ipsilateral to side of stimulation and in the intermediolateral cell column at the same levels bilaterally, but with an ipsilateral predominance. Few, if any Fos-labelled neurons were observed in the same structures of control animals in which the ARN were stimulated, but the renal nerves proximal to the site of stimulation were transected, or in the sham operated animals. These data indicate that ARN information originating in renal receptors is conveyed to a number of central areas known to be involved in the regulation of body fluid balance and arterial pressure, and suggest that this afferent information is an important component of central mechanisms regulating these homeostatic functions.
-
The effect of a single subcutaneous (s.c.) injection of the ultrapotent capsaicin analogue resiniferatoxin (RTX) on responses of adult rats to noxious thermal and mechanical stimulation was examined. The effects of RTX treatment on the nociceptive flexor reflex and activity-dependent increase in spinal excitability after conditioning C-fiber stimulation (CS) were also assessed. Finally, the expression of galanin message associated peptide (GMAP) mRNA in dorsal root ganglion (DRG) cells and the effects of the high affinity galanin receptor antagonist M35 on the flexor reflex in RTX-treated rats were evaluated. ⋯ The C-fiber mediated hyperexcitability was potentiated by the galanin receptor antagonist M35, more so in the non-recovered rats than in the partially recovered rats. The number of DRG cells expressing GMAP mRNA was significantly higher in non-recovered than in partially recovered rats. Thus, RTX produced marked and prolonged impairment of capsaicin-sensitive afferents and upregulation of the inhibitory neuropeptides GMAP and galanin in DRG neurons, which may underlie the prolonged effect of RTX.
-
Ibogaine, an alkaloid isolated from the bark of the African shrub, Tabernanthe iboga, has been claimed to decrease the self-administration of drugs of abuse like morphine, cocaine and alcohol. To determine whether these effects are mediated via opioid receptor systems, the effects of ibogaine and its metabolite, noribogaine on the antinociceptive actions of morphine, U-50,488H and [D-Pen2,D-Pen5]enkephalin (DPDPE) which are mu- kappa- and delta-opioid receptor agonists, respectively, were determined in male Swiss-Webster mice. Administration of morphine (7 or 10 mg/kg, s.c.), U-50,488H (15 or 25 mg/kg, i.p.) or DPDPE (10 microg/mouse, i.c.v.) produced antinociception in mice as measured by the tail-flick test. ⋯ It is concluded that ibogaine, which has been suggested to decrease the self-administration of cocaine and opiates like heroin in humans, does not produce such an action by interacting directly with multiple opioid receptors. However, the metabolite of ibogaine enhances the antinociception of morphine but not of U-50,488H or DPDPE. Thus, in vivo evidence has been provided for the possible interaction of ibogaine with mu-opioid receptor following its metabolism to noribogaine.
-
Peripheral nerve injury in a rat model (spinal nerve ligation) of neuropathic pain triggers sprouting of sympathetic fibers in the dorsal root ganglion (DRG). This sympathetic sprouting has been suggested as an important underlying mechanism for pain behaviors. ⋯ In addition, many vesicle-containing axonal enlargements (we will refer these as synaptic varicosities) were found in the interstitial space around DRG neurons, and some were enclosed within the satellite cell capsule which surrounded the DRG soma. The presence of sympathetic synaptic varicosities near or in apposition with either the DRG somata or their processes provides a structural basis for possible interactions between sensory neurons and sympathetic fibers in the DRG of neuropathic rats.