Brain research
-
The proinflammatory cytokine tumor necrosis factor-α (TNF-α) is well recognized as a key player in nociceptive signaling. Yet, therapeutic capitalization of this knowledge requires a better understanding of how TNF receptors (TNFR) contribute to pain. To address this question, we studied TNFR expression in the chronic sciatic nerve constriction (CCI) model of neuropathic pain. ⋯ Thalidomide was the only treatment that attenuated these increases. Finally, animals that showed a poor behavioral recovery were characterized by a significantly higher TNFR1/TNFR2 mRNA ratio. These data show that differential expression of TNFR in the dorsal horn is associated with recovery from pain in this model and suggest that the analgesic effects of thalidomide may act via this mechanism.
-
A number of studies have demonstrated that resveratrol (Res), a natural polyphenol compound found in plants, shows potent neuroprotective, anti-inflammatory and antioxidant effects; however, its ability to prevent ischemia-induced brain damage remains unclear. Here we tested whether Res played a neuroprotective role in a rat brain ischemia model induced by middle cerebral artery occlusion (MCAO). Adult male rats were randomly assigned into four experimental groups: sham operation (sham), ischemia treatment (MCAO), Res-treated MCAO (Res+MCAO) and Res alone group (Res+sham). ⋯ Res treatment increased the expression of anti-apoptotic protein Bcl-2 and decreased the expression of pro-apoptotic protein Bax in the MCAO rats. The findings suggest that Res can attenuate the deleterious effects of focal cerebral ischemia/reperfusion-induced brain injury and function as a potential neuroprotective agent. The neuroprotective qualities of Res, based on our data, may be attributable to the up-regulation of Bcl-2 expression and down-regulation of Bax expression.
-
We investigated the role of inositol 1, 4, 5-trisphosphate receptors (IP3Rs), activated during preconditioning low-frequency afferent stimulation (LFS), in the subsequent induction of long-term potentiation (LTP) in CA3 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential (EPSP) by the delivery of high-frequency stimulation (HFS, a tetanus of two trains of 100 pulses at 100Hz with a 10s interval) to mossy fiber-CA3 neuron synapses was suppressed when CA3 synapses were preconditioned by the LFS of 1000 pulses at 2Hz and this effect was inhibited when the LFS preconditioning was performed in the presence of an IP3R antagonist or a protein phosphatase inhibitor. Furthermore, activation of group 1 metabotropic glutamate receptors (mGluRs) during HFS canceled the effects of an IP3R antagonist given during preconditioning LFS on the subsequent LTP induction at mossy fiber-CA3 synapses. These results suggest that, in hippocampal mossy fiber-CA3 neuron synapses, activation of IP3Rs during a preconditioning LFS results in dephosphorylation events that lead to failure of the HFS to induce subsequent LTP.
-
Previous studies have shown that the pitch of a sound is perceived in the absence of its fundamental frequency (F0), suggesting that a distinct mechanism may resolve pitch based on a pattern that exists between harmonic frequencies. The present study investigated whether such a mechanism is active during voice pitch control. ERPs were recorded in response to +200 cents pitch shifts in the auditory feedback of self-vocalizations and complex tones with and without the F0. ⋯ Data from the present study suggest that the right cortical auditory areas, thought to be specialized for spectral processing, may utilize different mechanisms to resolve pitch in sounds with missing fundamental. The left hemisphere seems to perform faster processing to resolve pitch based on the rate of temporal variations in complex sounds compared with pure tones. These effects indicate that the differential neural processing of pitch in the left and right hemispheres may enable the audio-vocal system to detect temporal and spectral variations in the auditory feedback for vocal pitch control.
-
Severe disruption of brain iron homeostasis can cause fatal neurodegenerative disease, however debate surrounds the neurologic effects of milder, more common iron loading disorders such as hereditary hemochromatosis, which is usually caused by loss-of-function polymorphisms in the HFE gene. There is evidence from both human and animal studies that HFE gene variants may affect brain function and modify risks of brain disease. To investigate how disruption of HFE influences brain transcript levels, we used microarray and real-time reverse transcription polymerase chain reaction to assess the brain transcriptome in Hfe(-/-) mice relative to wildtype AKR controls (age 10 weeks, n≥4/group). ⋯ As previously reported for dietary iron-supplemented mice, there were altered levels of transcripts for genes linked to neuronal ceroid lipofuscinosis, a disease characterized by excessive lipofuscin deposition. Labile iron is known to enhance lipofuscin generation which may accelerate brain aging. The findings provide evidence that iron loading disorders can considerably perturb levels of transcripts for genes essential for normal brain function and may help explain some of the neurologic signs and symptoms reported in hemochromatosis patients.