Nitric oxide : biology and chemistry
-
Our aim was to study the ability of an immortalized cell line (AMJ2-C11) to sustain aerobic cell respiration at decreasing oxygen concentrations under continuous sulfide exposure. We assumed that the rate of elimination of sulfide through the pathway linked to the mitochondrial respiratory chain and therefore operating under aerobic conditions, should decrease with limiting oxygen concentrations. Thus, sulfide's inhibition of cellular respiration would occur faster under continuous sulfide exposure when the oxygen concentration is in the very low range. ⋯ All data are medians [25%, and 75% percentiles]. Our results confirm that the onset of inhibition of cell respiration by sulfide occurs earlier under a continuous exposure when approaching the anoxic condition. This property may contribute to the physiological role of sulfide as an oxygen sensor.
-
Nitric oxide (NO) can be generated by two-step reduction pathway in which nitrate is converted first into nitrite and then into NO via several mechanisms, as well as from arginine by endogenous nitric oxide synthase (NOS). We have recently shown that nitrite ions in the presence of erythrocytes inhibit platelet aggregation and activation, as measured by aggregometry and flow cytometric analysis of P-selectin, through its reduction to NO under partially deoxygenated conditions. In the current study, we investigated how nitrite may affect overall clotting processes via modulating platelet function using thrombelastography (TEG). ⋯ Neither compound changed any TEG parameters in plasma. Our results suggest that nitrite affects overall blood clotting and that TEG may be used to follow this process. Further the physiological effects of factors which determine NO bioavailability, such as endogenous levels of blood and tissue nitrite, may be useful as biomarkers for predicting hemostatic potential.
-
Chronic use of alendronate has been linked to gastrointestinal tract problems. Our objective was to evaluate the role of the NO/cGMP/KATP signaling pathway and nitric oxide synthase expression in alendronate-induced gastric damage. Rats were either treated with the NO donor, sodium nitroprusside (SNP; 1, 3, and 10 mg/kg), or the NO synthase (NOS) substrate, L-arginine (L-Arg; 50, 100, and 200 mg/kg). ⋯ In addition, alendronate reduced the expression of iNOS and eNOS in the gastric mucosa. Gastric ulcerogenic responses induced by alendronate were mediated by a decrease in NO derived from both eNOS and iNOS. In addition, our findings support the hypothesis that activation of the NO/cGMP/KATP pathway is of primary importance for protection against alendronate-induced gastric damage.
-
Angiotensin-(1-7) is a bioactive component of the renin-angiotensin system that is formed endogenously and induces nitric oxide release in several tissues. The L-arginine/NO/cyclic GMP pathway and ATP-sensitive K+ channels have been proposed as the mechanism of action for the peripheral antinociception of several groups of drug and endogenous substances, including opioids, non-steroidal analgesics, acetylcholine and others. The aim of the present study was to investigate the involvement of the L-arginine/NO/cGMP and KATP+ pathway on antinociception induced by angiotensin-(1-7). ⋯ In addition, the level of nitrite in the homogenized paw tissue, as determined by a colorimetric assay, indicated that exogenous Ang-(1-7) is able to induce NO release. The soluble guanylyl cyclase inhibitor ODQ and the specific blocker of ATP-sensitive K+ channels glibenclamide (40, 80 and 160 μg/paw) antagonized the Ang-(1-7) response. The results provide evidence that Ang-(1-7) most likely induces peripheral antinociceptive effects via the L-arginine/NO/cGMP pathway and KATP+ pathway activation.
-
We have previously demonstrated that a stable synthetic analog of 20-hydroxyeicosatetraenoic acid (20-HETE), N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine (5,14-HEDGE), prevents vascular hyporeactivity, hypotension, tachycardia, and inflammation in rats treated with lipopolysaccharide (LPS) and mortality in endotoxemic mice. These changes were attributed to decreased production of inducible nitric oxide (NO) synthase (iNOS)-derived NO, cyclooxygenase (COX)-2-derived vasodilator prostanoids, and proinflammatory mediators associated with increased cyctochrome P450 (CYP) 4A1-derived 20-HETE and CYP2C23-dependent antiinflammatory mediator formation. The aim of this study was to determine whether decreased expression and activity of iNOS, soluble guanylyl cyclase (sGC), protein kinase G (PKG), COX-2, gp91(phox) (NOX2; a superoxide generating NOX enzyme), and peroxynitrite production associated with increased expression of COX-1 and CYP4A1 and 20-HETE formation in renal and cardiovascular tissues of rats contributes to the effect of 5,14-HEDGE to prevent vasodilation, hypotension, tachycardia, and inflammation in response to systemic administration of LPS. ⋯ These effects of LPS, except iNOS mRNA and COX-1 protein expression, were prevented by 5,14-HEDGE (30mg/kg, s.c.; 1h after LPS). A competitive antagonist of vasoconstrictor effects of 20-HETE, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (30mg/kg, s.c.; 1h after LPS) reversed the effects of 5,14-HEDGE, except iNOS and COX-1 mRNA and protein expression as well as expression of CYP4A1 mRNA. These results suggest that increased CYP4A1 expression and 20-HETE formation associated with suppression of iNOS/sGC/PKG pathway, COX-2, and gp91(phox) participate in the protective effect of 5,14-HEDGE against vasodilation, hypotension, tachycardia, and inflammation in the rat model of septic shock.