Nitric oxide : biology and chemistry
-
Randomized Controlled Trial
A dose-finding study of methylene blue to inhibit nitric oxide actions in the hemodynamics of human septic shock.
Methylene blue increases blood pressure and myocardial function in septic shock mainly by inhibiting nitric oxide (NO) actions. However, a dose-dependency of methylene blue has not been established. Therefore, the compound is currently used as rescue treatment only. ⋯ The data suggest that in human septic shock, methylene blue increases mean arterial blood pressure by an increase in cardiac index and systemic vascular resistance. The rise in cardiac index is caused by an increase in left ventricular filling and function, increasing tissue oxygenation, even at a dose of 1mg/kg. High doses of methylene blue may compromise splanchnic perfusion, even though further enhancing global hemodynamics, and should therefore, be avoided in future studies.
-
This study examined the role of nitric oxide (NO) on the expression of the hepatic vasoregulatory gene during polymicrobial sepsis. Aminoguanidine (AG, 100 mg/kg) or Nomega-nitro-L-arginine methyl ester (L-NAME, 100 mg/kg) was injected intraperitoneally at 0, 3, 6, 10, and 20 h after a cecal ligation and puncture (CLP). The heart rate increased 24 h after the CLP, and this increase was attenuated by L-NAME and further attenuated by AG. ⋯ The level of TNF-alpha and COX-2 mRNA expression increased after CLP, and was attenuated by AG. These results show that iNOS and eNOS are regulated differently in sepsis. While eNOS appears to have a protective role in liver microcirculation, the strong upregulation of iNOS might contribute to a microvascular dysfunction and hepatic injury.
-
Nitric oxide (NO) synthesis is modulated by dimethylarginine dimethylaminohydrolase (DDAH) via metabolizing asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor. This study investigated whether glycosylated bovine serum albumin (GBSA) could impair NO synthesis by inhibition of DDAH expression and activity, and whether DDAH2 overexpression could reverse the impaired NO synthesis induced by GBSA in endothelial cells. Overexpression of DDAH2 gene was established by liposome-mediated gene transfection in ECV304 endothelial cell line. ⋯ The activity of DDAH and expression of DDAH2 gene but not DDAH1 gene were inhibited in endothelial cells after exposure to GBSA, whereas the concentrations of ADMA were increased concomitantly with the decrease of NOS activity in cells and NO production in media. Overexpression of DDAH2 gene could prevent the inhibition of DDAH activity induced by GBSA (0.55+/-0.02 vs 0.42+/-0.02U/g pro; n=3; P<0.05), decrease ADMA concentration (0.59+/-0.04 vs 1.13+/-0.11 micromol/L; n=3; P<0.01), and increase NOS activity and NO production (53.77+/-3.40 vs 34.59+/-2.57 micromol/L; P<0.05) compared with untransfected cells treated with GBSA. These results suggest that decreased DDAH activity and subsequent elevated endogenous ADMA are implicated in the inhibition of NO synthesis induced by GBSA, and overexpression of DDAH2 gene can prevent these changes in DDAH/ADMA/NOS/NO pathway of endothelial cells exposed to GBSA.
-
In the present study, we addressed the role of intercellular adhesion molecule type 1 (ICAM-1/CD54) in neutrophil migration to inflammatory site and whether the inhibitory effect of nitric oxide (NO) upon the neutrophil rolling, adhesion and migration involves down-modulation of ICAM-1 expression through a cyclic GMP (cGMP) dependent mechanism. It was observed that neutrophil migration induced by intraperitoneal administration of endotoxin (LPS), carrageenan (Cg) or N-formyl peptide (fMLP) in ICAM-1 deficient (ICAM-1-/-) is similar to that observed in wild type (WT) mice. The treatment of mice with NO synthase (NOS) inhibitors, NG-nitro-l-arginine, aminoguanidine or with a soluble guanylate cyclase (sGC) inhibitor, ODQ enhanced LPS- or Cg-induced neutrophil migration, rolling and adhesion on venular endothelium. ⋯ By contrast, SNAP reduced the ICAM-1 expression by a mechanism dependent on cGMP. In conclusion, the results suggest that although during inflammation, ICAM-1 does not contribute to neutrophil migration, it is necessary for the down-modulatory effect of inflammation-released NO on the adhesion and transmigration of neutrophils. Moreover, these NO effects are mediated via cGMP.
-
Nitric oxide (NO) involvement in intestinal ischemia-reperfusion (I/R) injury has been widely suggested but its protective or detrimental role remains still question of debate. Here, we examine the impact of supplementation or inhibition of NO availability on intestinal dysmotility and inflammation caused by mesenteric I/R in mice. Ischemia 45min and reperfusion 24h were performed by superior mesenteric artery occlusion in female Swiss mice. ⋯ Unlike P-BIT, aminoguanidine and l-NAME injection increased MAP. These findings confirm a detrimental role for iNOS-derived NO overproduction during reperfusion. Aminoguanidine-associated neutrophil recruitment suggests that this drug could act through mechanisms additional to iNOS inhibition involving both eNOS blockade, as indicated by its hemodynamic effects, and indirect activation of H(1) histamine receptors.