Brain : a journal of neurology
-
Improving neurological outcome after spinal cord injury is a major clinical challenge because axons, once severed, do not regenerate but 'dieback' from the lesion site. Although microglia, the immunocompetent cells of the brain and spinal cord respond rapidly to spinal cord injury, their role in subsequent injury or repair remains unclear. To assess the role of microglia in spinal cord white matter injury we used time-lapse two-photon and spectral confocal imaging of green fluorescent protein-labelled microglia, yellow fluorescent protein-labelled axons, and Nile Red-labelled myelin of living murine spinal cord and revealed dynamic changes in white matter elements after laser-induced spinal cord injury in real time. ⋯ Conversely, Tlr2 knock out: Thy1 yellow fluorescent protein double transgenic mice experienced greater axonal dieback than littermate controls. Thus, promoting an alternative microglial response through Pam2CSK4 treatment is neuroprotective acutely following laser-induced spinal cord injury. Therefore, anti-inflammatory treatments that target microglial activation may be counterintuitive after spinal cord injury.
-
Comparative Study
Enhancing K-Cl co-transport restores normal spinothalamic sensory coding in a neuropathic pain model.
Neuropathic pain is a widespread and highly debilitating condition commonly resulting from injury to the nervous system, one main sequela of which is tactile allodynia, a pain induced by innocuous mechanical stimulation of the skin. Yet, the cellular mechanisms and neuronal substrates underlying this pathology have remained elusive. We studied this by quantifying and manipulating behavioural and neuronal nociceptive thresholds in normal and pathological pain conditions. ⋯ Thus, we unveil a tight association between tactile allodynia and abnormal sensory coding within the normally nociceptive-specific spinothalamic tract. Thus allodynia appears to result from a switch in modality specificity within normally nociceptive-specific spinal relay neurons rather than a change in gain within a multimodal ascending tract. Our findings identify a neuronal substrate and a novel cellular mechanism as targets for the treatment of pathological pain.