British journal of anaesthesia
-
Therapeutic hypothermia, used primarily for protective effects after hypoxia, improves oral and gastric mucosal microvascular oxygenation (μHbO₂) during additional haemorrhage. Therefore, we questioned whether hypothermia likewise improves μHbO₂ during hypoxic challenges. Since both hypothermia and hypoxia reduce cardiac output (e.g. by myofilament Ca(2+) desensitization), and modulate vasomotor tone via K(+) ATP channels, we hypothesized that the Ca(2+) sensitizer levosimendan and K(+) ATP channel blocker glibenclamide would support the cardiovascular system. ⋯ Hypothermia attenuates the decrease in μHbO₂ during additional hypoxic challenges independent of systemic or regional flow changes. A reduction in cardiac output during hypothermia is prevented by Ca(2+) sensitization with levosimendan but not by K(+) ATP channel blockade with glibenclamide.
-
Whereas the effects of various inspiratory ventilatory modifications in lung injury have extensively been studied, those of expiratory ventilatory modifications are less well known. We hypothesized that the newly developed flow-controlled expiration (FLEX) mode provides a means of attenuating experimental lung injury. ⋯ The newly developed FLEX mode is able to attenuate experimental lung injury. FLEX could provide a novel means of lung-protective ventilation.